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Chapter 1. Introduction
When a design progresses from simulation to hardware implementation, a user’s control and
understanding of the system’s current state drops dramatically. To help bring up and debug low level
software and hardware, it is critical to have good debugging support built into the hardware. When a
robust OS is running on a core, software can handle many debugging tasks. However, in many
scenarios, hardware support is essential.

This document outlines a standard architecture for debug support on RISC-V hardware platforms.
This architecture allows a variety of implementations and tradeoffs, which is complementary to the
wide range of RISC-V implementations. At the same time, this specification defines common
interfaces to allow debugging tools and components to target a variety of hardware platforms based on
the RISC-V ISA.

System designers may choose to add additional hardware debug support, but this specification defines
a standard interface for common functionality.

1.1. Terminology
advanced feature

An advanced feature for advanced users. Most users will not be able to take advantage of it.

AMO
Atomic Memory Operation.

BYPASS
JTAG instruction that selects a single bit data register, also called BYPASS.

component
A RISC-V core, or other part of a hardware platform. Typically all components will be connected to
a single system bus.

CSR
Control and Status Register.

DM
Debug Module (see Chapter 3).

DMI
Debug Module Interface (see Section 3.1).

DR
JTAG Data Register.

DTM
Debug Transport Module (see Chapter 6).

DXLEN
Debug XLEN, which is the widest XLEN a hart supports, ignoring the current value of mxl in misa.
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essential feature
An essential feature must be present in order for debug to work correctly.

GPR
General Purpose Register.

hardware platform
A single system consisting of one or more components.

hart
A hardware thread in a RISC-V core.

IDCODE
32-bit Identification CODE, and a JTAG instruction that returns the IDCODE value.

IR
JTAG Instruction Register.

JTAG
Refers to work done by IEEE’s Joint Test Action Group, described in IEEE 1149.1.

legacy feature
A legacy feature should only be implemented to support legacy hardware that is present in a
system.

Minimal RISC-V Debug Specification
A subset of the full Debug Specification that allows for very small implementations. See Chapter 3.

NAPOT
Naturally Aligned Power-Of-Two.

NMI
Non-Maskable Interrupt.

physical address
address that is directly usable on the system bus.

recommended feature
A recommended feature is not required for debug to work correctly, but it is so useful that it should
not be omitted without good reason.

SBA
System Bus Access (see Section 3.10).

specialized feature
A specialized feature, that only makes sense in the context of some specific hardware.

TAP
Test Access Port, defined in IEEE 1149.1.
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TM
Trigger Module (see Chapter 5).

virtual address
An address as a hart sees it. If the hart is using address translation this may be different from the
physical address. If there is no translation then it will be the same.

xepc
The exception program counter CSR (e.g. ) that is appropriate for the mode being trapped to.

1.2. Context
This specification attempts to support all RISC-V ISA extensions that have, roughly, been ratified
through the first half of 2023. In particular, though, this specification specifically addresses features
in the following extensions:

1. A

2. C

3. D

4. F

5. H

6. Sm1p13

7. Ss1p13

8. Smstateen

9. V

10. Zawrs

11. Zcmp

12. Zicbom

13. Zicboz

14. Zicbop

1.2.1. Versions

Version 0.13 of this document was ratified by the RISC-V Foundation’s board. Versions 0.13.  are bug
fix releases to that ratified specification.

Version 0.14 was a working version that was never officially ratified.

Version 1.0 is almost entirely forwards and backwards compatible with Version 0.13.

1.2.1.1. Bugfixes from 0.13 to 1.0

Changes that fix a bug in the spec:

1. Fix order of operations described in sbdata0. #392

2. Resume ack is set after resume, in Section 3.5. #400
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3. sselect applies to svalue . #402

4. mte only applies when action=0. #411

5. aamsize does not affect Argument Width. #420

6. Clarify that harts halt out of reset if haltreq =1. #419

1.2.1.2. Incompatible Changes from 0.13 to 1.0

Changes that are not backwards-compatible. Debuggers or hardware implementations that implement
0.13 will have to change something in order to implement 1.0:

1. Make haltsum0 optional if there is only one hart. #505

2. System bus autoincrement only happens if an access actually takes place. (sbdata0) #507

3. Bump version to 3. #512 , Require debugger to poll dmactive after lowering it. #566

4. Add pending to icount . #574

5. When a selected trigger is disabled, tdata2 and tdata3 can be written with any value supported by
any of the types this trigger supports. #721

6. tcontrol fields only apply to breakpoint traps, not any trap. #723

7. If version is greater than 0, then hit0 (previously called mcontrol.hit) now contains 0 when a
trigger fires more than one instruction after the instruction that matched. (This information is
now reflected in .) #795

8. If version is greater than 0, then bit 20 of mcontrol6 is no longer used for timing information.
(Previously the bit was called mcontrol.timing.) #807

9. If version is greater than 0, then the encodings of size for sizes greater than 64 bit have changed.
#807

1.2.1.3. Minor Changes from 0.13 to 1.0

Changes that slightly modify defined behavior. Technically backwards incompatible, but unlikely to
be noticeable:

1. stopcount only applies to hart-local counters. #405

2. version may be invalid when dmactive=0. #414

3. Address triggers (mcontrol) may fire on any accessed address. #421

4. All Trigger Module registers (Table 14) are optional. #431

5. When extending IR, bypass still is all ones. #437

6. ebreaks and ebreaku are WARL. #458

7. NMIs are disabled by stepie. #465

8. R/W1C fields should be cleared by writing every bit high. #472

9. Specify trigger priorities in Table 13 relative to exceptions. #478

10. Time may pass before dmactive becomes high. #500

11. Clear MPRV when resuming into lower privilege mode. #503

12. Halt state may not be preserved across reset. #504
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13. Hardware should clear trigger action when dmode is cleared and action is 1. #501

14. Change quick access exceptions to halt the target in Section 3.7.1.2. #585

15. Writing 0 to tdata1 forces a state where tdata2 and tdata3 are writable. #598

16. Solutions to deal with reentrancy in Section 5.4 prevent triggers from matching, not merely firing.
This primarily affects behavior. #722

17. Attempts to access an unimplemented CSR raise an illegal instruction exception. #791

1.2.1.4. New Features from 0.13 to 1.0

New backwards-compatible feature that did not exist before:

1. Add halt groups and external triggers in Section 3.6. #404

2. Reserve some DMI space for non-standard use. See custom, and custom0 through . #406

3. Reserve trigger type values for non-standard use. #417

4. Add nmi bit to itrigger. #408 and #709

5. Recommend matching on every accessed address. #449

6. Add resume groups in Section 3.6. #506

7. Add relaxedpriv . #536

8. Move scontext, renaming original to mscontext, and create hcontext. #535

9. Add mcontrol6, deprecating mcontrol. #538

10. Add hypervisor support: ebreakvs, ebreakvu, v, hcontext, mcontrol, mcontrol6, and priv. #549

11. Optionally make anyunavail and allunavail sticky, controlled by stickyunavail. #520

12. Add tmexttrigger to support trigger module external trigger inputs. #543

13. Describe mcontrol and mcontrol6 behavior with atomic instructions. #561

14. Trigger hit bits must be set on fire, may be set on match. #593

15. Add sbytemask and sbytemask to textra32 and textra64. #588

16. Allow debugger to request harts stay alive with keepalive bit in setkeepalive. #592

17. Add ndmresetpending to allow a debugger to determine when ndmreset is complete. #594

18. Add intctl to support triggers from an interrupt controller. #599

1.2.1.5. Incompatible Changes During 1.0 Stable

Backwards-incompatible changes between two versions that are both called 1.0 stable.

1. nmi was moved from etrigger to itrigger, and is now subject to the mode bits in that trigger.

2. #728 introduced Message Registers, which were later removed in #878.

3. It may not be possible to read the contents of the Program Buffer using the progbuf registers. #731

4. tcontrol fields apply to all traps, not just breakpoint traps. This reverts #723. #880

1.2.1.6. Incompatible Changes Between 1.0.0-rc1 and 1.0.0-rc2

Backwards-incompatible changes between 1.0.0-rc1 and 1.0.0-rc2.
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1. #981 made scontext.data, mcontext.hcontext, sbytemask, and textra64.svalue narrower. This
avoids confusion about the contents of scontext and mcontext when XLEN is reduced and
increased again.

1.3. About This Document

1.3.1. Structure

This document contains two parts. The main part of the document is the specification, which is given
in the numbered chapters. The second part of the document is a set of appendices. The information in
the appendices is intended to clarify and provide examples, but is not part of the actual specification.

1.3.2. ISA vs. non-ISA

This specification contains both ISA and non-ISA parts. The ISA parts define self-contained ISA
extensions. The other parts of the document describe the non-ISA external debug extension. Chapters
whose contents are solely one or the other are labeled as such in their title. Chapters without such a
label apply to both ISA and non-ISA.

1.3.3. Register Definition Format

All register definitions in this document follow the format shown below. A simple graphic shows
which fields are in the register. The upper and lower bit indices are shown to the top left and top right
of each field. The total number of bits in the field are shown below it.

After the graphic follows a table which for each field lists its name, description, allowed accesses, and
reset value. The allowed accesses are listed in Table 1. The reset value is either a constant or "Preset."
The latter means it is an implementation-specific legal value.

Parts of the register which are currently unused are labeled with the number 0. Software must only
write 0 to those fields, and ignore their value while reading. Hardware must return 0 when those fields
are read, and ignore the value written to them.


This behavior enables us to use those fields later without having to increase the values in
the version fields.

Names of registers and their fields are hyperlinks to their definition, and are also listed in the Index.

1.3.3.1. Long Name (shortname, at 0x123)
31 8 7 0

0 field

24 8

Field Description Access Reset

 field Description of what this field is used for. R/W 15

Table 1. Register Access Abbreviations

R Read-only.
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R/W Read/Write.

R/W1C Read/Write Ones to Clear. Writing 0
to every bit has no effect. Writing 1 to
every bit clears the field. The result

of other writes is undefined.

WARZ Write any, read zero. A debugger may
write any value. When read this field

returns 0.

W1 Write-only. Only writing 1 has an
effect. When read the returned value

should be 0.

WARL Write any, read legal. A debugger
may write any value. If a value is

unsupported, the implementation
converts the value to one that is

supported.

1.4. Background
There are several use cases for dedicated debugging hardware, both in native debug and external
debug. Native debug (sometimes called self-hosted debug) refers to debug software running on a RISC-
V platform which debugs the same platform. The optional Trigger Module provides features that are
useful for native debug. External debug refers to debug software running somewhere else, debugging
the RISC-V platform via a debug transport like JTAG. The entire document provides features that are
useful for external debug.

This specification addresses the use cases listed below. Implementations can choose not to implement
every feature, which means some use cases might not be supported.

• Accessing hardware on a hardware platform without a working CPU. (External debug.)

• Bootstrapping a hardware platform to test, configure, and program components before there is any
executable code path in the hardware platform. (External debug.)

• Debugging low-level software in the absence of an OS or other software. (External debug.)

• Debugging issues in the OS itself. (External or native debug.)

• Debugging processes running on an OS. (Native or external debug.)

1.5. Supported Features
The debug interface described in this specification supports the following features:

1. All hart registers (including CSRs) can be read/written.

2. Memory can be accessed either from the hart’s point of view, through the system bus directly, or
both.

3. RV32, RV64, and future RV128 are all supported.

4. Any hart in the hardware platform can be independently debugged.
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5. A debugger can discover almost [1] everything it needs to know itself, without user configuration.

6. Each hart can be debugged from the very first instruction executed.

7. A RISC-V hart can be halted when a software breakpoint instruction is executed.

8. Hardware single-step can execute one instruction at a time.

9. Debug functionality is independent of the debug transport used.

10. The debugger does not need to know anything about the microarchitecture of the harts it is
debugging.

11. Arbitrary subsets of harts can be halted and resumed simultaneously. (Optional)

12. Arbitrary instructions can be executed on a halted hart. That means no new debug functionality is
needed when a core has additional or custom instructions or state, as long as there exist programs
that can move that state into GPRs. (Optional)

13. Registers can be accessed without halting. (Optional)

14. A running hart can be directed to execute a short sequence of instructions, with little overhead.
(Optional)

15. A system bus manager allows memory access without involving any hart. (Optional)

16. A RISC-V hart can be halted when a trigger matches the PC, read/write address/data, or an
instruction opcode. (Optional)

17. Harts can be grouped, and harts in the same group will all halt when any of them halts. These
groups can also react to or notify external triggers. (Optional)

This document does not suggest a strategy or implementation for hardware test, debugging or error
detection techniques. Scan, built-in self test (BIST), etc. are out of scope of this specification, but this
specification does not intend to limit their use in RISC-V systems.

It is possible to debug code that uses software threads, but there is no special debug support for it.

[1] Notable exceptions include information about the memory map and peripherals.
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Chapter 2. System Overview
Figure 1 shows the main components of Debug Support. Blocks shown in dotted lines are optional.

The user interacts with the Debug Host (e.g. laptop), which is running a debugger (e.g. gdb). The
debugger communicates with a Debug Translator (e.g. OpenOCD, which may include a hardware
driver) to communicate with Debug Transport Hardware (e.g. Olimex USB-JTAG adapter). The Debug
Transport Hardware connects the Debug Host to the hardware platform’s Debug Transport Module
(DTM). The DTM provides access to one or more Debug Modules (DMs) using the Debug Module
Interface (DMI).

Each hart in the hardware platform is controlled by exactly one DM. Harts may be heterogeneous.
There is no further limit on the hart-DM mapping, but usually all harts in a single core are controlled
by the same DM. In most hardware platforms there will only be one DM that controls all the harts in
the hardware platform.

DMs provide run control of their harts in the hardware platform. Abstract commands provide access
to GPRs. Additional registers are accessible through abstract commands or by writing programs to the
optional Program Buffer.

The Program Buffer allows the debugger to execute arbitrary instructions on a hart. This mechanism
can also be used to access memory. An optional system bus access block allows memory accesses
without using a RISC-V hart to perform the access.

Each RISC-V hart may implement a Trigger Module. When trigger conditions are met, harts will halt
and inform the debug module that they have halted.
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Figure 1. RISC-V Debug System Overview
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Chapter 3. Debug Module (DM) (non-ISA
extension)
The Debug Module implements a translation interface between abstract debug operations and their
specific implementation. It might support the following operations:

1. Give the debugger necessary information about the implementation. (Required)

2. Allow any individual hart to be halted and resumed. (Required)

3. Provide status on which harts are halted. (Required)

4. Provide abstract read and write access to a halted hart’s GPRs. (Required)

5. Provide access to a reset signal that allows debugging from the very first instruction after reset.
(Required)

6. Provide a mechanism to allow debugging harts immediately out of reset (regardless of the reset
cause). (Optional)

7. Provide abstract access to non-GPR hart registers. (Optional)

8. Provide a Program Buffer to force the hart to execute arbitrary instructions. (Optional)

9. Allow multiple harts to be halted, resumed, and/or reset at the same time. (Optional)

10. Allow memory access from a hart’s point of view. (Optional)

11. Allow direct System Bus Access. (Optional)

12. Group harts. When any hart in the group halts, they all halt. (Optional)

13. Respond to external triggers by halting each hart in a configured group. (Optional)

14. Signal an external trigger when a hart in a group halts. (Optional)

In order to be compatible with this specification an implementation must:

1. Implement all the required features listed above.

2. Implement at least one of Program Buffer, System Bus Access, or Abstract Access Memory
command mechanisms.

3. Do at least one of:

a. Implement the Program Buffer.

b. Implement abstract access to all registers that are visible to software running on the hart
including all the registers that are present on the hart and listed in Table 4.

c. Implement abstract access to at least all GPRs, dcsr, and dpc, and advertise the implementation
as conforming to the "Minimal RISC-V Debug Specification", instead of the "RISC-V Debug
Specification".

A single DM can debug up to  harts.

3.1. Debug Module Interface (DMI)
Debug Modules are subordinates on a bus called the Debug Module Interface (DMI). The bus manager
is the Debug Transport Module(s). The Debug Module Interface can be a trivial bus with one manager
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and one subordinate (see Table 21), or use a more full-featured bus like TileLink or the AMBA
Advanced Peripheral Bus. The details are left to the system designer.

The DMI uses between 7 and 32 address bits. Each address points at a single 32-bit register that can be
read or written. The bottom of the address space is used for the first (and usually only) DM. Extra
space can be used for custom debug devices, other cores, additional DMs, etc. If there are additional
DMs on this DMI, the base address of the next DM in the DMI address space is given in nextdm.

The Debug Module is controlled via register accesses to its DMI address space.

3.2. Reset Control
There are two methods that allow a debugger to reset harts. ndmreset resets all the harts in the
hardware platform, as well as all other parts of the hardware platform except for the Debug Modules,
Debug Transport Modules, and Debug Module Interface. Exactly what is affected by this reset is
implementation dependent, but it must be possible to debug programs from the first instruction
executed. hartreset resets all the currently selected harts. In this case an implementation may reset
more harts than just the ones that are selected. The debugger can discover which other harts are reset
(if any) by selecting them and checking anyhavereset and allhavereset.

To perform either of these resets, the debugger first asserts the bit, and then clears it. The actual reset
may start as soon as the bit is asserted, but may start an arbitrarily long time after the bit is deasserted.
The reset itself may also take an arbitrarily long time. While the reset is on-going, harts are either in
the running state, indicating it’s possible to perform some abstract commands during this time, or in
the unavailable state, indicating it’s not possible to perform any abstract commands during this time.
Once a hart’s reset is complete, havereset becomes set. When a hart comes out of reset and haltreq or
hasresethaltreq are set, the hart will immediately enter Debug Mode (halted state). Otherwise, if the
hart was initially running it will execute normally (running state) and if the hart was initially halted it
should now be running but may be halted.

 There is no general, reliable way for the debugger to know when reset has actually begun.

The Debug Module’s own state and registers should only be reset at power-up and while dmactive in
dmcontrol is 0. If there is another mechanism to reset the DM, this mechanism must also reset all the
harts accessible to the DM.

Due to clock and power domain crossing issues, it might not be possible to perform arbitrary DMI
accesses across hardware platform reset. While ndmreset or any external reset is asserted, the only
supported DM operations are reading/writing dmcontrol and reading ndmresetpending. The behavior
of other accesses is undefined.

When harts have been reset, they must set a sticky havereset state bit. The conceptual havereset
state bits can be read for selected harts in anyhavereset and allhavereset in dmstatus. These bits must
be set regardless of the cause of the reset. The havereset bits for the selected harts can be cleared by
writing 1 to ackhavereset in dmcontrol. The havereset bits might or might not be cleared when
dmactive is low.

3.3. Selecting Harts
Up to  harts can be connected to a single DM. Commands issued to the DM only apply to the
currently selected harts.
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To enumerate all the harts, a debugger must first determine HARTSELLEN by writing all ones to hartsel
(assuming the maximum size) and reading back the value to see which bits were actually set. Then it
selects each hart starting from 0 until either anynonexistent in dmstatus is 1, or the highest index
(depending on HARTSELLEN) is reached.

The debugger can discover the mapping between hart indices and mhartid by using the interface to
read mhartid, or by reading the hardware platform’s configuration structure.

3.3.1. Selecting a Single Hart

All debug modules must support selecting a single hart. The debugger can select a hart by writing its
index to hartsel. Hart indexes start at 0 and are contiguous until the final index.

3.3.2. Selecting Multiple Harts

Debug Modules may implement a Hart Array Mask register to allow selecting multiple harts at once.
The th bit in the Hart Array Mask register applies to the hart with index . If the bit is 1 then the hart
is selected. Usually a DM will have a Hart Array Mask register exactly wide enough to select all the
harts it supports, but it’s allowed to tie any of these bits to 0.

The debugger can set bits in the hart array mask register using hawindowsel and hawindow, then
apply actions to all selected harts by setting hasel. If this feature is supported, multiple harts can be
halted, resumed, and reset simultaneously. The state of the hart array mask register is not affected by
setting or clearing hasel.

Execution of Abstract Commands ignores this mechanism and only applies to the hart selected by
hartsel.

3.4. Hart DM States
Every hart that can be selected is in exactly one of the following four DM states: non-existent,
unavailable, running, or halted. Which state the selected harts are in is reflected by allnonexistent,
anynonexistent, allunavail, anyunavail, allrunning, anyrunning, allhalted, and anyhalted.

Harts are nonexistent if they will never be part of this hardware platform, no matter how long a user
waits. E.g. in a simple single-hart hardware platform only one hart exists, and all others are
nonexistent. Debuggers may assume that a hardware platform has no harts with indexes higher than
the first nonexistent one.

Harts are unavailable if they might exist/become available at a later time, or if there are other harts
with higher indexes than this one. Harts may be unavailable for a variety of reasons including being
reset, temporarily powered down, and not being plugged into the hardware platform. That means harts
might become available or unavailable at any time, although these events should be rare in hardware
platforms built to be easily debugged. There are no guarantees about the state of the hart when it
becomes available.

Hardware platforms with very large number of harts may permanently disable some during
manufacturing, leaving holes in the otherwise continuous hart index space. In order to let the
debugger discover all harts, they must show up as unavailable even if there is no chance of them ever
becoming available.

Harts are running when they are executing normally, as if no debugger was attached. This includes
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being in a low power mode or waiting for an interrupt, as long as a halt request will result in the hart
being halted.

Harts are halted when they are in Debug Mode, only performing tasks on behalf of the debugger.

Which states a hart that is reset goes through is implementation dependent. Harts may be unavailable
while reset is asserted, and some time after reset is deasserted. They might transition to running for
some time after reset is deasserted. Finally they end up either running or halted, depending on haltreq
and hasresethaltreq.

3.5. Run Control
For every hart, the Debug Module tracks 4 conceptual bits of state: halt request, resume ack, halt-on-
reset request, and hart reset. (The hart reset and halt-on-reset request bits are optional.) These 4 bits
reset to 0, except for resume ack, which may reset to either 0 or 1. The DM receives halted, running,
and havereset signals from each hart. The debugger can observe the state of resume ack in
allresumeack and anyresumeack, and the state of halted, running, and havereset signals in allhalted,
anyhalted, allrunning, anyrunning, allhavereset, and anyhavereset. The state of the other bits cannot
be observed directly.

When a debugger writes 1 to haltreq, each selected hart’s halt request bit is set. When a running hart,
or a hart just coming out of reset, sees its halt request bit high, it responds by halting, deasserting its
running signal, and asserting its halted signal. Halted harts ignore their halt request bit.

When a debugger writes 1 to resumereq, each selected hart’s resume ack bit is cleared and each
selected, halted hart is sent a resume request. Harts respond by resuming, clearing their halted signal,
and asserting their running signal. At the end of this process the resume ack bit is set. These status
signals of all selected harts are reflected in allresumeack, anyresumeack, allrunning, and anyrunning.
Resume requests are ignored by running harts.

When halt or resume is requested, a hart must respond in less than one second, unless it is
unavailable. (How this is implemented is not further specified. A few clock cycles will be a more
typical latency).

The DM can implement optional halt-on-reset bits for each hart, which it indicates by setting
hasresethaltreq to 1. This means the DM implements the setresethaltreq and clrresethaltreq bits.
Writing 1 to setresethaltreq sets the halt-on-reset request bit for each selected hart. When a hart’s halt-
on-reset request bit is set, the hart will immediately enter debug mode on the next deassertion of its
reset. This is true regardless of the reset’s cause. The hart’s halt-on-reset request bit remains set until
cleared by the debugger writing 1 to clrresethaltreq while the hart is selected, or by DM reset.

If the DM is reset while a hart is halted, it is UNSPECIFIED whether that hart resumes. Debuggers
should use resumereq to explicitly resume harts before clearing dmactive and disconnecting.

3.6. Halt Groups, Resume Groups, and External
Triggers
An optional feature allows a debugger to place harts into two kinds of groups: halt groups and resume
groups. It is also possible to add external triggers to a halt and resume groups. At any given time, each
hart and each trigger is a member of exactly one halt group and exactly one resume group.
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In both halt and resume groups, group 0 is special. Harts in group 0 halt/resume as if groups aren’t
implemented at all.

When any hart in a halt group halts:

1. That hart halts normally, with cause reflecting the original cause of the halt.

2. All the other harts in the halt group that are running will quickly halt. cause for those harts should
be set to 6, but may be set to 3. Other harts in the halt group that are halted but have started the
process of resuming must also quickly become halted, even if they do resume briefly.

3. Any external triggers in that group are notified.

Adding a hart to a halt group does not automatically halt that hart, even if other harts in the group are
already halted.

When an external trigger that’s a member of the halt group fires:

1. All the harts in the halt group that are running will quickly halt. cause for those harts should be set
to 6, but may be set to 3. Other harts in the halt group that are halted but have started the process
of resuming must also quickly become halted, even if they do resume briefly.

When any hart in a resume group resumes:

1. All the other harts in that group that are halted will quickly resume as soon as any currently
executing abstract commands have completed. Each hart in the group sets its resume ack bit as
soon as it has resumed. Harts that are in the process of halting should complete that process and
stay halted.

2. Any external triggers in that group are notified.

Adding a hart to a resume group does not automatically resume that hart, even if other harts in the
group are currently running.

When an external trigger that’s a member of the resume group fires:

1. All the harts in that group that are halted will quickly resume as soon as any currently executing
abstract commands have completed. Each hart in the group sets its resume ack bit as soon as it has
resumed. Harts that are in the process of halting should complete that process and stay halted.

External triggers are abstract concepts that can signal the DM and/or receive signals from the DM.
This configuration is done through dmcs2, where external triggers are referred to by a number.
Commonly, external triggers are capable of sending a signal from the hardware platform into the DM,
as well as receiving a signal from the DM to take their own action on. It is also allowable for an
external trigger to be input-only or output-only. By convention external triggers 0-7 are bidirectional,
triggers 8-11 are input-only, and triggers 12-15 are output-only but this is not required.


External triggers could be used to implement near simultaneous halting/resuming of all
cores in a hardware platform, when not all cores are RISC-V cores.

When the DM is reset, all harts must be placed in the lowest-numbered halt and resume groups that
they can be in. (This will usually be group 0.)

Some designs may choose to hardcode hart groups to a group other than group 0, meaning it is never
possible to halt or resume just a single hart. This is explicitly allowed. In that case it must be possible
to discover the groups by using dmcs2 even if it’s not possible to change the configuration.
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3.7. Abstract Commands
The DM supports a set of abstract commands, most of which are optional. Depending on the
implementation, the debugger may be able to perform some abstract commands even when the
selected hart is not halted. Debuggers can only determine which abstract commands are supported by
a given hart in a given state (running, halted, or held in reset) by attempting them and then looking at
cmderr in abstractcs to see if they were successful. Commands may be supported with some options
set, but not with other options set. If a command has unsupported options set or if bits that are defined
as 0 aren’t 0, then the DM must set cmderr to 2 (not supported).


Example: Every DM must support the Access Register command, but might not support
accessing CSRs. If the debugger requests to read a CSR in that case, the command will
return "not supported".

Debuggers execute abstract commands by writing them to command. They can determine whether an
abstract command is complete by reading busy in abstractcs. If the debugger starts a new command
while busy is set, cmderr becomes 1 (busy), the currently executing command still gets to run to
completion, but any error generated by the currently executing command is lost. After completion,
cmderr indicates whether the command was successful or not. Commands may fail because a hart is
not halted, not running, unavailable, or because they encounter an error during execution.

If the command takes arguments, the debugger must write them to the data registers before writing to
command. If a command returns results, the Debug Module must ensure they are placed in the data
registers before busy is cleared. Which data registers are used for the arguments is described in Table
2. In all cases the least-significant word is placed in the lowest-numbered data register. The argument
width depends on the command being executed, and is DXLEN where not explicitly specified.

Table 2. Use of Data Registers

Argument Width arg0/return value arg1 arg2

32 data0 data1 data2

64 data0, data1 data2, data3 data4, data5

128 data0-data3 data4-data7 data8-data11



The Abstract Command interface is designed to allow a debugger to write commands as
fast as possible, and then later check whether they completed without error. In the
common case the debugger will be much slower than the target and commands succeed,
which allows for maximum throughput. If there is a failure, the interface ensures that no
commands execute after the failing one. To discover which command failed, the debugger
has to look at the state of the DM (e.g. contents of data0) or hart (e.g. contents of a
register modified by a Program Buffer program) to determine which one failed.

Before starting an abstract command, a debugger must ensure that haltreq, resumereq, and
ackhavereset are all 0.

While an abstract command is executing (busy in abstractcs is high), a debugger must not change
hartsel, and must not write 1 to haltreq, resumereq, ackhavereset, setresethaltreq, or clrresethaltreq.

If an abstract command does not complete in the expected time and appears to be hung, the debugger
can try to reset the hart (using hartreset or ndmreset). If that doesn’t clear busy, then it can try
resetting the Debug Module (using dmactive).
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If an abstract command is started while the selected hart is unavailable or if a hart becomes
unavailable while executing an abstract command, then the Debug Module may terminate the abstract
command, setting busy low, and cmderr to 4 (halt/resume). Alternatively, the command could just
appear to be hung (busy never goes low).

3.7.1. Abstract Command Listing

This section describes each of the different abstract commands and how their fields should be
interpreted when they are written to command.

Each abstract command is a 32-bit value. The top 8 bits contain cmdtype which determines the kind
of command. Table 3 lists all commands.

Table 3. Meaning of cmdtype

cmdtype Command

0 Access Register Command

1 Quick Access

2 Access Memory Command

3.7.1.1. Access Register

This command gives the debugger access to CPU registers and allows it to execute the Program Buffer.
It performs the following sequence of operations:

1. If write is clear and transfer is set, then copy data from the register specified by regno into the arg0
region of data, and perform any side effects that occur when this register is read from M-mode.

2. If write is set and transfer is set, then copy data from the arg0 region of data into the register
specified by regno, and perform any side effects that occur when this register is written from M-
mode.

3. If aarpostincrement and transfer are set, increment regno. regno may also be incremented if
aarpostincrement is set and transfer is clear.

4. Execute the Program Buffer, if postexec is set.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An
implementation may detect an upcoming failure early, and fail the overall command before it reaches
the step that would cause failure. If the failure is that the requested register does not exist in the hart,
cmderr must be set to 3 (exception).

Debug Modules must implement this command and must support read and write access to all GPRs
when the selected hart is halted. Debug Modules may optionally support accessing other registers, or
accessing registers when the hart is running. It is recommended that if one register in a group is
accessible, then all registers in that group are accessible, but each individual register (aside from
GPRs) may be supported differently across read, write, and halt status.

Registers might not be accessible if they wouldn’t be accessible by M mode code currently running.
(E.g. fflags might not be accessible when mstatus.FS is 0.) If this is the case, the debugger is
responsible for changing state to make the registers accessible. The Core Debug Registers (Section 4.9)
should be accessible if abstract CSR access is implemented.

Table 4. Abstract Register Numbers
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Numbers Group Description

0x0000 — 0x0fff CSRs. The ``PC'' can be accessed here through dpc.

0x1000 — 0x101f GPRs

0x1020 — 0x103f Floating point registers

0xc000 — 0xffff Reserved for non-standard extensions and internal use.

 The encoding of aarsize was chosen to match sbaccess in sbcs.

This command modifies arg0 only when a register is read. The other data registers are not changed.

31 24 23 22 20 19 18 17 16 15 0

cmdtype 0 aarsize aarpostincrement postexec transfer write regno

8 1 3 1 1 1 1 16

Field Description

 cmdtype This is 0 to indicate Access Register Command.

 aarsize 2 (32bit): Access the lowest 32 bits of the register.

3 (64bit): Access the lowest 64 bits of the register.

4 (128bit): Access the lowest 128 bits of the register.

If aarsize specifies a size larger than the register’s actual size, then the
access must fail. If a register is accessible, then reads of aarsize less than
or equal to the register’s actual size must be supported. Writing less than
the full register may be supported, but what happens to the high bits in
that case is UNSPECIFIED.

This field controls the Argument Width as referenced in Table 2.

 aarpostincrement 0 (disabled): No effect. This variant must be supported.

1 (enabled): After a successful register access, regno is incremented.
Incrementing past the highest supported value causes regno to become
UNSPECIFIED. Supporting this variant is optional. It is undefined
whether the increment happens when transfer is 0.

 postexec 0 (disabled): No effect. This variant must be supported, and is the only
supported one if progbufsize is 0.

1 (enabled): Execute the program in the Program Buffer exactly once after
performing the transfer, if any. Supporting this variant is optional.

 transfer 0 (disabled): Don’t do the operation specified by write.

1 (enabled): Do the operation specified by write.

This bit can be used to just execute the Program Buffer without having to
worry about placing valid values into aarsize or regno.
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Field Description

 write When transfer is set:

0 (arg0): Copy data from the specified register into arg0 portion of data.

1 (register): Copy data from arg0 portion of data into the specified
register.

 regno Number of the register to access, as described in Table 4. dpc may be
used as an alias for PC if this command is supported on a non-halted
hart.

3.7.1.2. Quick Access

Perform the following sequence of operations:

1. If the hart is halted, the command sets cmderr to ``halt/resume'' and does not continue.

2. Halt the hart. If the hart halts for some other reason (e.g. breakpoint), the command sets cmderr to
``halt/resume'' and does not continue.

3. Execute the Program Buffer. If an exception occurs, cmderr is set to ``exception,'' the Program
Buffer execution ends, and the hart is halted with cause set to 3.

4. If the Program Buffer executed without an exception, then resume the hart.

Implementing this command is optional.

This command does not touch the data registers.

31 24 23 0

cmdtype 0

8 24

Field Description

 cmdtype This is 1 to indicate Quick Access command.

3.7.1.3. Access Memory

This command lets the debugger perform memory accesses, with the exact same memory view and
permissions as the selected hart has. This includes access to hart-local memory-mapped registers, etc.
The command performs the following sequence of operations:

1. Copy data from the memory location specified in arg1 into the arg0 portion of data, if write is
clear.

2. Copy data from the arg0 portion of data into the memory location specified in arg1, if write is set.

3. If aampostincrement is set, increment arg1.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An access
may only fail if the hart, running M-mode code, might encounter that same failure when it attempts
the same access. An implementation may detect an upcoming failure early, and fail the overall
command before it reaches the step that would cause failure.
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Debug Modules may optionally implement this command and may support read and write access to
memory locations when the selected hart is running or halted. If this command supports memory
accesses while the hart is running, it must also support memory accesses while the hart is halted.

 The encoding of aamsize was chosen to match sbaccess in sbcs.

This command modifies arg0 only when memory is read. It modifies arg1 only if aampostincrement
is set. The other data registers are not changed.

31 24 23 22 20 19 18 17 16 15 14 13 0

cmdtype aamvirtual aamsize aampostincrement 0 write target-specific 0

8 1 3 1 2 1 2 14

Field Description

 cmdtype This is 2 to indicate Access Memory Command.

 aamvirtual An implementation does not have to implement both virtual and
physical accesses, but it must fail accesses that it doesn’t support.

0 (physical): Addresses are physical (to the hart they are performed on).

1 (virtual): Addresses are virtual, and translated the way they would be
from M-mode, with MPRV set.

Debug Modules on systems without address translation (i.e. virtual
addresses equal physical) may optionally allow aamvirtual set to 1, which
would produce the same result as that same abstract command with
aamvirtual cleared.

 aamsize 0 (8bit): Access the lowest 8 bits of the memory location.

1 (16bit): Access the lowest 16 bits of the memory location.

2 (32bit): Access the lowest 32 bits of the memory location.

3 (64bit): Access the lowest 64 bits of the memory location.

4 (128bit): Access the lowest 128 bits of the memory location.

 aampostincrement After a memory access has completed, if this bit is 1, increment arg1
(which contains the address used) by the number of bytes encoded in
aamsize.

Supporting this variant is optional, but highly recommended for
performance reasons.

 write 0 (arg0): Copy data from the memory location specified in arg1 into the
low bits of arg0. The value of the remaining bits of arg0 are
UNSPECIFIED.

1 (memory): Copy data from the low bits of arg0 into the memory
location specified in arg1.

 target-specific These bits are reserved for target-specific uses.
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3.8. Program Buffer
To support executing arbitrary instructions on a halted hart, a Debug Module can include a Program
Buffer that a debugger can write small programs to. DMs that support all necessary functionality using
abstract commands only may choose to omit the Program Buffer.

A debugger can write a small program to the Program Buffer, and then execute it exactly once with the
Access Register Abstract Command, setting the postexec bit in command. The debugger can write
whatever program it likes (including jumps out of the Program Buffer), but the program must end with
ebreak or c.ebreak. An implementation may support an implicit ebreak that is executed when a hart
runs off the end of the Program Buffer. This is indicated by impebreak. With this feature, a Program
Buffer of just 2 32-bit words can offer efficient debugging.

While these programs are executed, the hart does not leave Debug Mode (see Section 4.1). If an
exception is encountered during execution of the Program Buffer, no more instructions are executed,
the hart remains in Debug Mode, and cmderr is set to 3 (exception error). If the debugger executes a
program that doesn’t terminate with an ebreak instruction, the hart will remain in Debug Mode and
the debugger will lose control of the hart.

If progbufsize is 1 then the following apply:

1. impebreak must be 1.

2. If the debugger writes a compressed instruction into the Program Buffer, it must be placed into the
lower 16 bits and accompanied by a compressed nop in the upper 16 bits.


This requirement on the debugger for the case of progbufsize equal to 1 is to accommodate
hardware designs that prefer to stuff instructions directly into the pipeline when halted,
instead of having the Program Buffer exist in the address space somewhere.

The Program Buffer may be implemented as RAM which is accessible to the hart. A debugger can
determine if this is the case by executing small programs that attempt to write and read back relative
to pc while executing from the Program Buffer. If so, the debugger has more flexibility in what it can
do with the program buffer.

3.9. Overview of Hart Debug States
Figure 2 shows a conceptual view of the states passed through by a hart during run/halt debugging as
influenced by the different fields of dmcontrol, abstractcs, abstractauto, and command.
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Figure 2. Run/Halt Debug State Machine for single-hart hardware platforms. As only a small amount of state is
visible to the debugger, the states and transitions are conceptual.

3.10. System Bus Access
A debugger can access memory from a hart’s point of view using a Program Buffer or the Abstract
Access Memory command. (Both these features are optional.) A Debug Module may also include a
System Bus Access block to provide memory access without involving a hart, regardless of whether
Program Buffer is implemented. The System Bus Access block uses physical addresses.

The System Bus Access block may support 8-, 16-, 32-, 64-, and 128-bit accesses. Table 5 shows which
bits in sbdata are used for each access size.
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Table 5. System Bus Data Bits

Access Size Data Bits

8 sbdata0 bits 7:0

16 sbdata0 bits 15:0

32 sbdata0

64 sbdata1, sbdata0

128 sbdata3, sbdata2, sbdata1, sbdata0

Depending on the microarchitecture, data accessed through System Bus Access might not always be
coherent with that observed by each hart. It is up to the debugger to enforce coherency if the
implementation does not. This specification does not define a standard way to do this. Possibilities
may include writing to special memory-mapped locations, or executing special instructions via the
Program Buffer.



Implementing a System Bus Access block has several benefits even when a Debug Module
also implements a Program Buffer. First, it is possible to access memory in a running
system with minimal impact. Second, it may improve performance when accessing
memory. Third, it may provide access to devices that a hart does not have access to.

3.11. Minimally Intrusive Debugging
Depending on the task it is performing, some harts can only be halted very briefly. There are several
mechanisms that allow accessing resources in such a running system with a minimal impact on the
running hart.

First, an implementation may allow some abstract commands to execute without halting the hart.

Second, the Quick Access abstract command can be used to halt a hart, quickly execute the contents of
the Program Buffer, and let the hart run again. Combined with instructions that allow Program Buffer
code to access the data registers, as described in hartinfo, this can be used to quickly perform a
memory or register access. For some hardware platforms this will be too intrusive, but many hardware
platforms that can’t be halted can bear an occasional hiccup of a hundred or less cycles.

Third, if the System Bus Access block is implemented, it can be used while a hart is running to access
system memory.

3.12. Security
To protect intellectual property it may be desirable to lock access to the Debug Module. To allow access
during a manufacturing process and not afterwards, a reasonable solution could be to add a fuse bit to
the Debug Module that can be used to permanently disable it. Since this is technology specific, it is not
further addressed in this spec.

Another option is to allow the DM to be unlocked only by users who have an access key. Between
authenticated, authbusy, and authdata arbitrarily complex authentication mechanism can be
supported. When authenticated is clear, the DM must not interact with the rest of the hardware
platform, nor expose details about the harts connected to the DM. All DM registers should read 0,
while writes should be ignored, with the following mandatory exceptions:
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1. authenticated in dmstatus is readable.

2. authbusy in dmstatus is readable.

3. version in dmstatus is readable.

4. dmactive in dmcontrol is readable and writable.

5. authdata is readable and writable.

Implementations where it’s not possible to unlock the DM by using authdata should not implement
that register.

3.13. Version Detection
To detect the version of the Debug Module with a minimum of side effects, use the following
procedure:

1. Read dmcontrol.

2. If dmactive is 0 or ndmreset is 1:

a. Write dmcontrol, preserving hartreset, hasel, hartsello, and hartselhi from the value that was
read, setting dmactive, and clearing all the other bits.

b. Read dmcontrol until dmactive is high.

3. Read dmstatus, which contains version.

If it was necessary to clear ndmreset, this might have the following side effects:

1. haltreq is cleared, potentially preventing a halt request made by a previous debugger from taking
effect.

2. resumereq is cleared, potentially preventing a resume request made by a previous debugger from
taking effect.

3. ndmreset is deasserted, releasing the hardware platform from reset if a previous debugger had set
it.

4. dmactive is asserted, releasing the DM from reset. This in itself is not observable by any harts.

This procedure is guaranteed to work in future versions of this spec. The meaning of the dmcontrol
bits where hartreset, hasel, hartsello, and hartselhi currently reside might change, but preserving them
will have no side effects. Clearing the bits of dmcontrol not explicitly mentioned here will have no side
effects beyond the ones mentioned above.

3.14. Debug Module Registers
The registers described in this section are accessed over the DMI bus. Each DM has a base address
(which is 0 for the first DM). The register addresses below are offsets from this base address.

Debug Module DMI Registers that are unimplemented or not mentioned in the table below return 0
when read. Writing them has no effect.

Table 6. Debug Module Debug Bus Registers
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Address Name Section

0x04 Abstract Data 0 (data0) Section 3.14.14

0x05 Abstract Data 1 (data1)

0x06 Abstract Data 2 (data2)

0x07 Abstract Data 3 (data3)

0x08 Abstract Data 4 (data4)

0x09 Abstract Data 5 (data5)

0x0a Abstract Data 6 (data6)

0x0b Abstract Data 7 (data7)

0x0c Abstract Data 8 (data8)

0x0d Abstract Data 9 (data9)

0x0e Abstract Data 10 (data10)

0x0f Abstract Data 11 (data11)

0x10 Debug Module Control (dmcontrol) Section 3.14.2

0x11 Debug Module Status (dmstatus) Section 3.14.1

0x12 Hart Info (hartinfo) Section 3.14.3

0x13 Halt Summary 1 (haltsum1) Section 3.14.19

0x14 Hart Array Window Select (hawindowsel) Section 3.14.4

0x15 Hart Array Window (hawindow) Section 3.14.5

0x16 Abstract Control and Status (abstractcs) Section 3.14.6

0x17 Abstract Command (command) Section 3.14.7

0x18 Abstract Command Autoexec (abstractauto) Section 3.14.8

0x19 Configuration Structure Pointer 0 (confstrptr0) Section 3.14.9

0x1a Configuration Structure Pointer 1 (confstrptr1) Section 3.14.10

0x1b Configuration Structure Pointer 2 (confstrptr2) Section 3.14.11

0x1c Configuration Structure Pointer 3 (confstrptr3) Section 3.14.12

0x1d Next Debug Module (nextdm) Section 3.14.13

0x1f Custom Features (custom) Section 3.14.31

0x20 Program Buffer 0 (progbuf0) Section 3.14.15

0x21 Program Buffer 1 (progbuf1)

0x22 Program Buffer 2 (progbuf2)

0x23 Program Buffer 3 (progbuf3)

0x24 Program Buffer 4 (progbuf4)

0x25 Program Buffer 5 (progbuf5)

0x26 Program Buffer 6 (progbuf6)

0x27 Program Buffer 7 (progbuf7)
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Address Name Section

0x28 Program Buffer 8 (progbuf8)

0x29 Program Buffer 9 (progbuf9)

0x2a Program Buffer 10 (progbuf10)

0x2b Program Buffer 11 (progbuf11)

0x2c Program Buffer 12 (progbuf12)

0x2d Program Buffer 13 (progbuf13)

0x2e Program Buffer 14 (progbuf14)

0x2f Program Buffer 15 (progbuf15)

0x30 Authentication Data (authdata) Section 3.14.16

0x32 Debug Module Control and Status 2 (dmcs2) Section 3.14.17

0x34 Halt Summary 2 (haltsum2) Section 3.14.20

0x35 Halt Summary 3 (haltsum3) Section 3.14.21

0x37 System Bus Address 127:96 (sbaddress3) Section 3.14.26

0x38 System Bus Access Control and Status (sbcs) Section 3.14.22

0x39 System Bus Address 31:0 (sbaddress0) Section 3.14.23

0x3a System Bus Address 63:32 (sbaddress1) Section 3.14.24

0x3b System Bus Address 95:64 (sbaddress2) Section 3.14.25

0x3c System Bus Data 31:0 (sbdata0) Section 3.14.27

0x3d System Bus Data 63:32 (sbdata1) Section 3.14.28

0x3e System Bus Data 95:64 (sbdata2) Section 3.14.29

0x3f System Bus Data 127:96 (sbdata3) Section 3.14.30

0x40 Halt Summary 0 (haltsum0) Section 3.14.18

0x70 Custom Features 0 (custom0) Section 3.14.32

0x71 Custom Features 1 (custom1)

0x72 Custom Features 2 (custom2)

0x73 Custom Features 3 (custom3)

0x74 Custom Features 4 (custom4)

0x75 Custom Features 5 (custom5)

0x76 Custom Features 6 (custom6)

0x77 Custom Features 7 (custom7)

0x78 Custom Features 8 (custom8)

0x79 Custom Features 9 (custom9)

0x7a Custom Features 10 (custom10)

0x7b Custom Features 11 (custom11)

0x7c Custom Features 12 (custom12)
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Address Name Section

0x7d Custom Features 13 (custom13)

0x7e Custom Features 14 (custom14)

0x7f Custom Features 15 (custom15)

3.14.1. Debug Module Status (dmstatus, at 0x11)

This register reports status for the overall Debug Module as well as the currently selected harts, as
defined in hasel. Its address will not change in the future, because it contains version.

This entire register is read-only.

31 25 24 23 22 21 20 19 18

0 ndmresetpending stickyunavail impebreak 0 allhavereset anyhavereset

7 1 1 1 2 1 1

17 16 15 14 13 12 11

allresumeack anyresumeack allnonexistent anynonexistent allunavail anyunavail allrunning

1 1 1 1 1 1 1

10 9 8 7 6 5 4 3 0

anyrunning allhalted anyhalted authenticated authbusy hasresethaltreq confstrptrvalid version

1 1 1 1 1 1 1 4

Field Description Access Reset

 ndmresetpending 0 (false): Unimplemented, or ndmreset is zero and no
ndmreset is currently in progress.

1 (true): ndmreset is currently nonzero, or there is an
ndmreset in progress.

R -

 stickyunavail 0 (current): The per-hart unavail bits reflect the current
state of the hart.

1 (sticky): The per-hart unavail bits are sticky. Once they
are set, they will not clear until the debugger acknowledges
them using ackunavail.

R Preset

 impebreak If 1, then there is an implicit ebreak instruction at the
non-existent word immediately after the Program Buffer.
This saves the debugger from having to write the ebreak
itself, and allows the Program Buffer to be one word
smaller.

This must be 1 when progbufsize is 1.

R Preset

 allhavereset This field is 1 when all currently selected harts have been
reset and reset has not been acknowledged for any of
them.

R -

 anyhavereset This field is 1 when at least one currently selected hart has
been reset and reset has not been acknowledged for that
hart.

R -
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Field Description Access Reset

 allresumeack This field is 1 when all currently selected harts have their
resume ack bit set.

R -

 anyresumeack This field is 1 when any currently selected hart has its
resume ack bit set.

R -

 allnonexistent This field is 1 when all currently selected harts do not exist
in this hardware platform.

R -

 anynonexistent This field is 1 when any currently selected hart does not
exist in this hardware platform.

R -

 allunavail This field is 1 when all currently selected harts are
unavailable, or (if stickyunavail is 1) were unavailable
without that being acknowledged.

R -

 anyunavail This field is 1 when any currently selected hart is
unavailable, or (if stickyunavail is 1) was unavailable
without that being acknowledged.

R -

 allrunning This field is 1 when all currently selected harts are
running.

R -

 anyrunning This field is 1 when any currently selected hart is running. R -

 allhalted This field is 1 when all currently selected harts are halted. R -

 anyhalted This field is 1 when any currently selected hart is halted. R -

 authenticated 0 (false): Authentication is required before using the DM.

1 (true): The authentication check has passed.

On components that don’t implement authentication, this
bit must be preset as 1.

R Preset

 authbusy 0 (ready): The authentication module is ready to process
the next read/write to authdata.

1 (busy): The authentication module is busy. Accessing
authdata results in unspecified behavior.

authbusy only becomes set in immediate response to an
access to authdata.

R 0

 hasresethaltreq 1 if this Debug Module supports halt-on-reset functionality
controllable by the setresethaltreq and clrresethaltreq bits.
0 otherwise.

R Preset

 confstrptrvalid 0 (invalid): confstrptr0--confstrptr3 hold information
which is not relevant to the configuration structure.

1 (valid): confstrptr0--confstrptr3 hold the address of the
configuration structure.

R Preset
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Field Description Access Reset

 version 0 (none): There is no Debug Module present.

1 (0.11): There is a Debug Module and it conforms to
version 0.11 of this specification.

2 (0.13): There is a Debug Module and it conforms to
version 0.13 of this specification.

3 (1.0): There is a Debug Module and it conforms to
version 1.0 of this specification.

15 (custom): There is a Debug Module but it does not
conform to any available version of this spec.

R 3

3.14.2. Debug Module Control (dmcontrol, at 0x10)

This register controls the overall Debug Module as well as the currently selected harts, as defined in
hasel.

 Throughout this document we refer to hartsel, which is hartselhi combined with hartsello. While the
spec allows for 20 hartsel bits, an implementation may choose to implement fewer than that. The
actual width of hartsel is called HARTSELLEN. It must be at least 0 and at most 20. A debugger should
discover HARTSELLEN by writing all ones to hartsel (assuming the maximum size) and reading back the
value to see which bits were actually set. Debuggers must not change hartsel while an abstract
command is executing.


There are separate setresethaltreq and clrresethaltreq bits so that it is possible to write
dmcontrol without changing the halt-on-reset request bit for each selected hart, when not
all selected harts have the same configuration.

On any given write, a debugger may only write 1 to at most one of the following bits: resumereq,
hartreset, ackhavereset, setresethaltreq, and clrresethaltreq. The others must be written 0.

 resethaltreq is an optional internal bit of per-hart state that cannot be read, but can be written with
setresethaltreq and clrresethaltreq.

 keepalive is an optional internal bit of per-hart state. When it is set, it suggests that the hardware
should attempt to keep the hart available for the debugger, e.g. by keeping it from entering a low-power
state once powered on. Even if the bit is implemented, hardware might not be able to keep a hart
available. The bit is written through setkeepalive and clrkeepalive.

For forward compatibility, version will always be readable when bit 1 (ndmreset) is 0 and bit 0
(dmactive) is 1.

31 30 29 28 27 26 25 16

haltreq resumereq hartreset ackhavereset ackunavail hasel hartsello

1 1 1 1 1 1 10

15 6 5 4 3 2 1 0

hartselhi setkeepalive clrkeepalive setresethaltreq clrresethaltreq ndmreset dmactive

10 1 1 1 1 1 1

3.14. Debug Module Registers | Page 30

The RISC-V Debug Specification | © RISC-V



Field Description Access Reset

 haltreq Writing 0 clears the halt request bit for all currently
selected harts. This may cancel outstanding halt requests
for those harts.

Writing 1 sets the halt request bit for all currently selected
harts. Running harts will halt whenever their halt request
bit is set.

Writes apply to the new value of hartsel and hasel.

WARZ -

 resumereq Writing 1 causes the currently selected harts to resume
once, if they are halted when the write occurs. It also clears
the resume ack bit for those harts.

resumereq is ignored if haltreq is set.

Writes apply to the new value of hartsel and hasel.

W1 -

 hartreset This optional field writes the reset bit for all the currently
selected harts. To perform a reset the debugger writes 1,
and then writes 0 to deassert the reset signal.

While this bit is 1, the debugger must not change which
harts are selected.

If this feature is not implemented, the bit always stays 0,
so after writing 1 the debugger can read the register back to
see if the feature is supported.

Writes apply to the new value of hartsel and hasel.

WARL 0

 ackhavereset 0 (nop): No effect.

1 (ack): Clears havereset for any selected harts.

Writes apply to the new value of hartsel and hasel.

W1 -

 ackunavail 0 (nop): No effect.

1 (ack): Clears unavail for any selected harts that are
currently available.

Writes apply to the new value of hartsel and hasel.

W1 -
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Field Description Access Reset

 hasel Selects the definition of currently selected harts.

0 (single): There is a single currently selected hart, that is
selected by hartsel.

1 (multiple): There may be multiple currently selected
harts — the hart selected by hartsel, plus those selected by
the hart array mask register.

An implementation which does not implement the hart
array mask register must tie this field to 0. A debugger
which wishes to use the hart array mask register feature
should set this bit and read back to see if the functionality
is supported.

WARL 0

 hartsello The low 10 bits of hartsel: the DM-specific index of the
hart to select. This hart is always part of the currently
selected harts.

WARL 0

 hartselhi The high 10 bits of hartsel: the DM-specific index of the
hart to select. This hart is always part of the currently
selected harts.

WARL 0

 setkeepalive This optional field sets keepalive for all currently selected
harts, unless clrkeepalive is simultaneously set to 1.

Writes apply to the new value of hartsel and hasel.

W1 -

 clrkeepalive This optional field clears keepalive for all currently
selected harts.

Writes apply to the new value of hartsel and hasel.

W1 -

 setresethaltreq This optional field writes the halt-on-reset request bit for
all currently selected harts, unless clrresethaltreq is
simultaneously set to 1. When set to 1, each selected hart
will halt upon the next deassertion of its reset. The halt-
on-reset request bit is not automatically cleared. The
debugger must write to clrresethaltreq to clear it.

Writes apply to the new value of hartsel and hasel.

If hasresethaltreq is 0, this field is not implemented.

W1 -

 clrresethaltreq This optional field clears the halt-on-reset request bit for
all currently selected harts.

Writes apply to the new value of hartsel and hasel.

W1 -

 ndmreset This bit controls the reset signal from the DM to the rest of
the hardware platform. The signal should reset every part
of the hardware platform, including every hart, except for
the DM and any logic required to access the DM. To
perform a hardware platform reset the debugger writes 1,
and then writes 0 to deassert the reset.

R/W 0
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Field Description Access Reset

 dmactive This bit serves as a reset signal for the Debug Module
itself. After changing the value of this bit, the debugger
must poll dmcontrol until dmactive has taken the
requested value before performing any action that
assumes the requested dmactive state change has
completed. Hardware may take an arbitrarily long time to
complete activation or deactivation and will indicate
completion by setting dmactive to the requested value.

0 (inactive): The module’s state, including authentication
mechanism, takes its reset values (the dmactive bit is the
only bit which can be written to something other than its
reset value). Any accesses to the module may fail.
Specifically, version might not return correct data.

1 (active): The module functions normally.

No other mechanism should exist that may result in
resetting the Debug Module after power up.

To place the Debug Module into a known state, a debugger
may write 0 to dmactive, poll until dmactive is observed 0,
write 1 to dmactive, and poll until dmactive is observed 1.

Implementations may pay attention to this bit to further
aid debugging, for example by preventing the Debug
Module from being power gated while debugging is active.

R/W 0

3.14.3. Hart Info (hartinfo, at 0x12)

This register gives information about the hart currently selected by hartsel.

This register is optional. If it is not present it should read all-zero.

If this register is included, the debugger can do more with the Program Buffer by writing programs
which explicitly access the data and/or dscratch registers.

This entire register is read-only.

31 24 23 20 19 17 16 15 12 11 0

0 nscratch 0 dataaccess datasize dataaddr

8 4 3 1 4 12

Field Description Access Reset

 nscratch Number of dscratch registers available for the debugger to
use during program buffer execution, starting from
dscratch0. The debugger can make no assumptions about
the contents of these registers between commands.

R Preset
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Field Description Access Reset

 dataaccess 0 (csr): The data registers are shadowed in the hart by
CSRs. Each CSR is DXLEN bits in size, and corresponds to
a single argument, per Table 2.

1 (memory): The data registers are shadowed in the hart’s
memory map. Each register takes up 4 bytes in the
memory map.

R Preset

 datasize If dataaccess is 0: Number of CSRs dedicated to shadowing
the data registers.

If dataaccess is 1: Number of 32-bit words in the memory
map dedicated to shadowing the data registers.

Since there are at most 12 data registers, the value in this
register must be 12 or smaller.

R Preset

 dataaddr If dataaccess is 0: The number of the first CSR dedicated
to shadowing the data registers.

If dataaccess is 1: Address of RAM where the data registers
are shadowed. This address is sign extended giving a range
of -2048 to 2047, easily addressed with a load or store
using x0 as the address register.

R Preset

3.14.4. Hart Array Window Select (hawindowsel, at 0x14)

This register selects which of the 32-bit portion of the hart array mask register (see Section 3.3.2) is
accessible in hawindow.

31 15 14 0

0 hawindowsel

17 15

Field Description Access Reset

 hawindowsel The high bits of this field may be tied to 0, depending on
how large the array mask register is. E.g. on a hardware
platform with 48 harts only bit 0 of this field may actually
be writable.

WARL 0

3.14.5. Hart Array Window  (hawindow, at 0x15)

This register provides R/W access to a 32-bit portion of the hart array mask register (see Section 3.3.2).
The position of the window is determined by hawindowsel. I.e. bit 0 refers to hart hawindowsel ,
while bit 31 refers to hart hawindowsel .

Since some bits in the hart array mask register may be constant 0, some bits in this register may be
constant 0, depending on the current value of hawindowsel.
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31 0

maskdata

32

3.14.6. Abstract Control and Status (abstractcs, at 0x16)

Writing this register while an abstract command is executing causes cmderr to become 1 (busy) once
the command completes (busy becomes 0).


datacount must be at least 1 to support RV32 harts, 2 to support RV64 harts, or 4 to
support RV128 harts.

31 29 28 24 23 13 12 11 10 8 7 4 3 0

0 progbufsize 0 busy relaxedpriv cmderr 0 datacount

3 5 11 1 1 3 4 4

Field Description Access Reset

 progbufsize Size of the Program Buffer, in 32-bit words. Valid sizes are
0 - 16.

R Preset

 busy 0 (ready): There is no abstract command currently being
executed.

1 (busy): An abstract command is currently being executed.

This bit is set as soon as command is written, and is not
cleared until that command has completed.

R 0

 relaxedpriv This optional bit controls whether program buffer and
abstract memory accesses are performed with the exact
and full set of permission checks that apply based on the
current architectural state of the hart performing the
access, or with a relaxed set of permission checks (e.g. PMP
restrictions are ignored). The details of the latter are
implementation-specific.

0 (full checks): Full permission checks apply.

1 (relaxed checks): Relaxed permission checks apply.

WARL Preset
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Field Description Access Reset

 cmderr Gets set if an abstract command fails. The bits in this field
remain set until they are cleared by writing 1 to them. No
abstract command is started until the value is reset to 0.

This field only contains a valid value if busy is 0.

0 (none): No error.

1 (busy): An abstract command was executing while
command, abstractcs, or abstractauto was written, or when
one of the data or progbuf registers was read or written.
This status is only written if cmderr contains 0.

2 (not supported): The command in command is not
supported. It may be supported with different options set,
but it will not be supported at a later time when the hart or
system state are different.

3 (exception): An exception occurred while executing the
command (e.g. while executing the Program Buffer).

4 (halt/resume): The abstract command couldn’t execute
because the hart wasn’t in the required state
(running/halted), or unavailable.

5 (bus): The abstract command failed due to a bus error
(e.g. alignment, access size, or timeout).

6 (reserved): Reserved for future use.

7 (other): The command failed for another reason.

R/W1C 0

 datacount Number of data registers that are implemented as part of
the abstract command interface. Valid sizes are 1 — 12.

R Preset

3.14.7. Abstract Command (command, at 0x17)

Writes to this register cause the corresponding abstract command to be executed.

Writing this register while an abstract command is executing causes cmderr to become 1 (busy) once
the command completes (busy becomes 0).

If cmderr is non-zero, writes to this register are ignored.



cmderr inhibits starting a new command to accommodate debuggers that, for
performance reasons, send several commands to be executed in a row without checking
cmderr in between. They can safely do so and check cmderr at the end without worrying
that one command failed but then a later command (which might have depended on the
previous one succeeding) passed.
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31 24 23 0

cmdtype control

8 24

Field Description Access Reset

 cmdtype The type determines the overall functionality of this
abstract command.

WARZ 0

 control This field is interpreted in a command-specific manner,
described for each abstract command.

WARZ 0

3.14.8. Abstract Command Autoexec (abstractauto, at 0x18)

This register is optional. Including it allows more efficient burst accesses. A debugger can detect
whether it is supported by setting bits and reading them back.

If this register is implemented then bits corresponding to implemented progbuf and data registers
must be writable. Other bits must be hard-wired to 0.

If this register is written while an abstract command is executing then the write is ignored and cmderr
becomes 1 (busy) once the command completes (busy becomes 0).

31 16 15 12 11 0

autoexecprogbuf 0 autoexecdata

16 4 12

Field Description Access Reset

 autoexecprogbuf When a bit in this field is 1, read or write accesses to the
corresponding progbuf word cause the DM to act as if the
current value in command was written there again after
the access to progbuf completes.

WARL 0

 autoexecdata When a bit in this field is 1, read or write accesses to the
corresponding data word cause the DM to act as if the
current value in command was written there again after
the access to data completes.

WARL 0

3.14.9. Configuration Structure Pointer 0 (confstrptr0, at 0x19)

When confstrptrvalid is set, reading this register returns bits 31:0 of the configuration structure
pointer. Reading the other confstrptr registers returns the upper bits of the address.

When system bus access is implemented, this must be an address that can be used with the System
Bus Access module. Otherwise, this must be an address that can be used to access the configuration
structure from the hart with ID 0.

If confstrptrvalid is 0, then the confstrptr registers hold identifier information which is not further
specified in this document.

The configuration structure itself is a data structure of the same format as the data structure pointed
to by mconfigptr as described in the Privileged Spec.
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This entire register is read-only.

31 0

addr

32

3.14.10. Configuration Structure Pointer 1 (confstrptr1, at 0x1a)

When confstrptrvalid is set, reading this register returns bits 63:32 of the configuration structure
pointer. See confstrptr0 for more details.

This entire register is read-only.

31 0

addr

32

3.14.11. Configuration Structure Pointer 2 (confstrptr2, at 0x1b)

When confstrptrvalid is set, reading this register returns bits 95:64 of the configuration structure
pointer. See confstrptr0 for more details.

This entire register is read-only.

31 0

addr

32

3.14.12. Configuration Structure Pointer 3 (confstrptr3, at 0x1c)

When confstrptrvalid is set, reading this register returns bits 127:96 of the configuration structure
pointer. See confstrptr0 for more details.

This entire register is read-only.

31 0

addr

32

3.14.13. Next Debug Module (nextdm, at 0x1d)

If there is more than one DM accessible on this DMI, this register contains the base address of the next
one in the chain, or 0 if this is the last one in the chain.

This entire register is read-only.

31 0

addr

32
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3.14.14. Abstract Data 0 (data0, at 0x04)

data0 through data11 are registers that may be read or changed by abstract commands. datacount
indicates how many of them are implemented, starting at data0, counting up. Table 2 shows how
abstract commands use these registers.

Accessing these registers while an abstract command is executing causes cmderr to be set to 1 (busy) if
it is 0.

Attempts to write them while busy is set does not change their value.

The values in these registers might not be preserved after an abstract command is executed. The only
guarantees on their contents are the ones offered by the command in question. If the command fails,
no assumptions can be made about the contents of these registers.

31 0

data

32

3.14.15. Program Buffer 0 (progbuf0, at 0x20)

progbuf0 through progbuf15 must provide write access to the optional program buffer. It may also be
possible for the debugger to read from the program buffer through these registers. If reading is not
supported, then all reads return 0.

progbufsize indicates how many progbuf registers are implemented starting at progbuf0, counting up.

Accessing these registers while an abstract command is executing causes cmderr to be set to 1 (busy) if
it is 0.

Attempts to write them while busy is set does not change their value.

31 0

data

32

3.14.16. Authentication Data (authdata, at 0x30)

This register serves as a 32-bit serial port to/from the authentication module.

When authbusy is clear, the debugger can communicate with the authentication module by reading or
writing this register. There is no separate mechanism to signal overflow/underflow.

31 0

data

32

3.14.17. Debug Module Control and Status 2 (dmcs2, at 0x32)

This register contains DM control and status bits that didn’t easily fit in dmcontrol and dmstatus. All
are optional.
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If halt groups are not implemented, then group will always be 0 when grouptype is 0.

If resume groups are not implemented, then grouptype will remain 0 even after 1 is written there.

The DM external triggers available to add to halt groups may be the same as or distinct from the DM
external triggers available to add to resume groups.

31 12 11 10 7 6 2 1 0

0 grouptype dmexttrigger group hgwrite hgselect

20 1 4 5 1 1

Field Description Access Reset

 grouptype 0 (halt): The remaining fields in this register configure
halt groups.

1 (resume): The remaining fields in this register configure
resume groups.

WARL 0

 dmexttrigger This field contains the currently selected DM external
trigger.

If a non-existent trigger value is written here, the hardware
will change it to a valid one or 0 if no DM external triggers
exist.

WARL 0

 group When hgselect is 0, contains the group of the hart
specified by hartsel.

When hgselect is 1, contains the group of the DM external
trigger selected by dmexttrigger.

The value written to this field is ignored unless hgwrite is
also written 1.

Group numbers are contiguous starting at 0, with the
highest number being implementation-dependent, and
possibly different between different group types.
Debuggers should read back this field after writing to
confirm they are using a hart group that is supported.

If groups aren’t implemented, then this entire field is 0.

WARL preset

3.14. Debug Module Registers | Page 40

The RISC-V Debug Specification | © RISC-V



Field Description Access Reset

 hgwrite When 1 is written and hgselect is 0, for every selected hart
the DM will change its group to the value written to group,
if the hardware supports that group for that hart.
Implementations may also change the group of a minimal
set of unselected harts in the same way, if that is necessary
due to a hardware limitation.

When 1 is written and hgselect is 1, the DM will change the
group of the DM external trigger selected by dmexttrigger
to the value written to group, if the hardware supports that
group for that trigger.

Writing 0 has no effect.

W1 -

 hgselect 0 (harts): Operate on harts.

1 (triggers): Operate on DM external triggers.

If there are no DM external triggers, this field must be tied
to 0.

WARL 0

3.14.18. Halt Summary 0 (haltsum0, at 0x40)

Each bit in this read-only register indicates whether one specific hart is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 2 harts are connected to this DM.

The LSB reflects the halt status of hart {hartsel[19:5],5’h0}, and the MSB reflects halt status of hart
{hartsel[19:5],5’h1f}.

This entire register is read-only.

31 0

haltsum0

32

3.14.19. Halt Summary 1 (haltsum1, at 0x13)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 33 harts are connected to this DM.

The LSB reflects the halt status of harts {hartsel[19:10],10’h0} through {hartsel[19:10],10’h1f}. The MSB
reflects the halt status of harts {hartsel[19:10],10’h3e0} through {hartsel[19:10],10’h3ff}.

This entire register is read-only.
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31 0

haltsum1

32

3.14.20. Halt Summary 2 (haltsum2, at 0x34)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 1025 harts are connected to this DM.

The LSB reflects the halt status of harts {hartsel[19:15],15’h0} through {hartsel[19:15],15’h3ff}. The MSB
reflects the halt status of harts {hartsel[19:15],15’h7c00} through {hartsel[19:15],15’h7fff}.

This entire register is read-only.

31 0

haltsum2

32

3.14.21. Halt Summary 3 (haltsum3, at 0x35)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 32769 harts are connected to this DM.

The LSB reflects the halt status of harts 20’h0 through 20’h7fff. The MSB reflects the halt status of
harts 20’hf8000 through 20’hfffff.

This entire register is read-only.

31 0

haltsum3

32

3.14.22. System Bus Access Control and Status (sbcs, at 0x38)
31 29 28 23 22 21 20 19 17 16

sbversion 0 sbbusyerror sbbusy sbreadonaddr sbaccess sbautoincrement

3 6 1 1 1 3 1

15 14 12 11 5 4 3 2 1 0

sbreadondata sberror sbasize sbaccess128 sbaccess64 sbaccess32 sbaccess16 sbaccess8

1 3 7 1 1 1 1 1
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Field Description Access Reset

 sbversion 0 (legacy): The System Bus interface conforms to mainline
drafts of this spec older than 1 January, 2018.

1 (1.0): The System Bus interface conforms to this version
of the spec.

Other values are reserved for future versions.

R 1

 sbbusyerror Set when the debugger attempts to read data while a read
is in progress, or when the debugger initiates a new access
while one is already in progress (while sbbusy is set). It
remains set until it’s explicitly cleared by the debugger.

While this field is set, no more system bus accesses can be
initiated by the Debug Module.

R/W1C 0

 sbbusy When 1, indicates the system bus manager is busy.
(Whether the system bus itself is busy is related, but not
the same thing.) This bit goes high immediately when a
read or write is requested for any reason, and does not go
low until the access is fully completed.

Writes to sbcs while sbbusy is high result in undefined
behavior. A debugger must not write to sbcs until it reads
sbbusy as 0.

R 0

 sbreadonaddr When 1, every write to sbaddress0 automatically triggers a
system bus read at the new address.

R/W 0

 sbaccess Select the access size to use for system bus accesses.

0 (8bit): 8-bit

1 (16bit): 16-bit

2 (32bit): 32-bit

3 (64bit): 64-bit

4 (128bit): 128-bit

If sbaccess has an unsupported value when the DM starts a
bus access, the access is not performed and sberror is set to
4.

R/W 2

 sbautoincrement When 1, sbaddress is incremented by the access size (in
bytes) selected in sbaccess after every system bus access.

R/W 0

 sbreadondata When 1, every read from sbdata0 automatically triggers a
system bus read at the (possibly auto-incremented)
address.

R/W 0

3.14. Debug Module Registers | Page 43

The RISC-V Debug Specification | © RISC-V



Field Description Access Reset

 sberror When the Debug Module’s system bus manager
encounters an error, this field gets set. The bits in this field
remain set until they are cleared by writing 1 to them.
While this field is non-zero, no more system bus accesses
can be initiated by the Debug Module.

An implementation may report ``Other'' (7) for any error
condition.

0 (none): There was no bus error.

1 (timeout): There was a timeout.

2 (address): A bad address was accessed.

3 (alignment): There was an alignment error.

4 (size): An access of unsupported size was requested.

7 (other): Other.

R/W1C 0

 sbasize Width of system bus addresses in bits. (0 indicates there is
no bus access support.)

R Preset

 sbaccess128 1 when 128-bit system bus accesses are supported. R Preset

 sbaccess64 1 when 64-bit system bus accesses are supported. R Preset

 sbaccess32 1 when 32-bit system bus accesses are supported. R Preset

 sbaccess16 1 when 16-bit system bus accesses are supported. R Preset

 sbaccess8 1 when 8-bit system bus accesses are supported. R Preset

3.14.23. System Bus Address 31:0 (sbaddress0, at 0x39)

If sbasize is 0, then this register is not present.

When the system bus manager is busy, writes to this register will set sbbusyerror and don’t do
anything else.

If sberror is 0, sbbusyerror is 0, and sbreadonaddr is set then writes to this register start the following:

1. Set sbbusy.

2. Perform a bus read from the new value of sbaddress.

3. If the read succeeded and sbautoincrement is set, increment sbaddress.

4. Clear sbbusy.

31 0

address

32
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Field Description Access Reset

 address Accesses bits 31:0 of the physical address in sbaddress. R/W 0

3.14.24. System Bus Address 63:32 (sbaddress1, at 0x3a)

If sbasize is less than 33, then this register is not present.

When the system bus manager is busy, writes to this register will set sbbusyerror and don’t do
anything else.

31 0

address

32

Field Description Access Reset

 address Accesses bits 63:32 of the physical address in sbaddress
(if the system address bus is that wide).

R/W 0

3.14.25. System Bus Address 95:64 (sbaddress2, at 0x3b)

If sbasize is less than 65, then this register is not present.

When the system bus manager is busy, writes to this register will set sbbusyerror and don’t do
anything else.

31 0

address

32

Field Description Access Reset

 address Accesses bits 95:64 of the physical address in sbaddress
(if the system address bus is that wide).

R/W 0

3.14.26. System Bus Address 127:96 (sbaddress3, at 0x37)

If sbasize is less than 97, then this register is not present.

When the system bus manager is busy, writes to this register will set sbbusyerror and don’t do
anything else.

31 0

address

32

Field Description Access Reset

 address Accesses bits 127:96 of the physical address in sbaddress
(if the system address bus is that wide).

R/W 0
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3.14.27. System Bus Data 31:0 (sbdata0, at 0x3c)

If all of the sbaccess bits in sbcs are 0, then this register is not present.

Any successful system bus read updates sbdata. If the width of the read access is less than the width of
sbdata, the contents of the remaining high bits may take on any value.

If either sberror or sbbusyerror isn’t 0 then accesses do nothing.

If the bus manager is busy then accesses set sbbusyerror, and don’t do anything else.

Writes to this register start the following:

1. Set sbbusy.

2. Perform a bus write of the new value of sbdata to sbaddress.

3. If the write succeeded and sbautoincrement is set, increment sbaddress.

4. Clear sbbusy.

Reads from this register start the following:

1. "Return" the data.

2. Set sbbusy.

3. If sbreadondata is set:

a. Perform a system bus read from the address contained in sbaddress, placing the result in
sbdata.

b. If sbautoincrement is set and the read was successful, increment sbaddress.

4. Clear sbbusy.

Only sbdata0 has this behavior. The other sbdata registers have no side effects. On systems that have
buses wider than 32 bits, a debugger should access sbdata0 after accessing the other sbdata registers.

31 0

data

32

Field Description Access Reset

 data Accesses bits 31:0 of sbdata. R/W 0

3.14.28. System Bus Data 63:32 (sbdata1, at 0x3d)

If sbaccess64 and sbaccess128 are 0, then this register is not present.

If the bus manager is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32
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Field Description Access Reset

 data Accesses bits 63:32 of sbdata (if the system bus is that
wide).

R/W 0

3.14.29. System Bus Data 95:64 (sbdata2, at 0x3e)

This register only exists if sbaccess128 is 1.

If the bus manager is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

Field Description Access Reset

 data Accesses bits 95:64 of sbdata (if the system bus is that
wide).

R/W 0

3.14.30. System Bus Data 127:96 (sbdata3, at 0x3f)

This register only exists if sbaccess128 is 1.

If the bus manager is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

Field Description Access Reset

 data Accesses bits 127:96 of sbdata (if the system bus is that
wide).

R/W 0

3.14.31. Custom Features (custom, at 0x1f)

This optional register may be used for non-standard features. Future version of the debug spec will not
use this address.

3.14.32. Custom Features 0 (custom0, at 0x70)

The optional custom0 through custom15 registers may be used for non-standard features. Future
versions of the debug spec will not use these addresses.
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Chapter 4. Sdext (ISA Extension)
This chapter describes the Sdext ISA extension. It must be implemented to make external debug work,
and is only useful in conjunction with external debug.

Modifications to the RISC-V core to support debug are kept to a minimum. There is a special execution
mode (Debug Mode) and a few extra CSRs. The DM takes care of the rest.

In order to be compatible with this specification an implementation must implement everything
described in this chapter that is not explicitly listed as optional.

If Sdext is implemented and Sdtrig is not implemented, then accessing any of the Sdtrig CSRs must
raise an illegal instruction exception.

4.1. Debug Mode
Debug Mode is a special processor mode used only when a hart is halted for external debugging.
Because the hart is halted, there is no forward progress in the normal instruction stream. How Debug
Mode is implemented is not specified here.

When executing code due to an abstract command, the hart stays in Debug Mode and the following
apply:

1. All implemented instructions operate just as they do in M-mode, unless an exception is mentioned
in this list.

2. All operations are executed with machine mode privilege, except that additional Debug Mode CSRs
are accessible and mprv in mstatus may be ignored according to mprven. Full permission checks,
or a relaxed set of permission checks, will apply according to relaxedpriv.

3. All interrupts (including NMI) are masked.

4. Traps don’t take place. Instead, they end execution of the program buffer and the hart remains in
Debug Mode. Because they do not trap to M-mode, they do not update registers such as , mepc,
mcause, mtval, mtval2, and mtinst. The same is true for the equivalent privileged registers that are
updated when trapping to other modes. Registers that may be updated as part of execution before
the exception are allowed to be updated. For example, vector load/store instructions which raise
exceptions may partially update the destination register and set vstart appropriately.

5. Triggers don’t match or fire.

6. If stopcount is 0 then counters continue. If it is 1 then counters are stopped.

7. If stoptime is 0 then time continues to update. If it is 1 then time will not update. It will
resynchronize with time after leaving Debug Mode.

8. Instructions that place the hart into a stalled state act as a nop. This includes wfi, wrs.sto, and
wrs.nto.

9. Almost all instructions that change the privilege mode have UNSPECIFIED behavior. This
includes ecall, mret, sret, and uret. (To change the privilege mode, the debugger can write prv
and v in dcsr). The only exception is ebreak, which ends execution of the Program Buffer when
executed.

10. All control transfer instructions may act as illegal instructions if their destination is in the
Program Buffer. If one such instruction acts as an illegal instruction, all such instructions must act
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as illegal instructions.

11. All control transfer instructions may act as illegal instructions if their destination is outside the
Program Buffer. If one such instruction acts as an illegal instruction, all such instructions must act
as illegal instructions.

12. Instructions that depend on the value of the PC (e.g. auipc) may act as illegal instructions.

13. Effective XLEN is DXLEN.

14. Forward progress is guaranteed.



When mprven, the external debugger can set MPRV and MPP appropriately to have
hardware perform memory accesses with the appropriate endianness, address translation,
permission checks, and PMP/PMA checks (subject to relaxedpriv). This is also the only
way to access all of physical memory when 34-bit physical addresses are supported on a
Sv32 hart. If hardware ties mprven to 0 then the external debugger is expected to simulate
all the effects of MPRV, including any extensions that affect memory accesses. For these
reasons it is recommended to tie mprven to 1.

4.2. Load-Reserved/Store-Conditional Instructions
The reservation registered by an lr instruction on a memory address may be lost when entering
Debug Mode or while in Debug Mode. This means that there may be no forward progress if Debug
Mode is entered between lr and sc pairs.



This is a behavior that debug users must be aware of. If they have a breakpoint set between
a lr and sc pair, or are stepping through such code, the sc may never succeed.
Fortunately in general use there will be very few instructions in such a sequence, and
anybody debugging it will quickly notice that the reservation is not occurring. The solution
in that case is to set a breakpoint on the first instruction after the sc and run to it. A
higher level debugger may choose to automate this.

4.3. Wait for Interrupt Instruction
If halt is requested while wfi is executing, then the hart must leave the stalled state, completing this
instruction’s execution, and then enter Debug Mode.

4.4. Wait-on-Reservation-Set Instructions
If halt is requested while wrs.sto or wrs.nto is executing, then the hart must leave the stalled state,
completing this instruction’s execution, and then enter Debug Mode.

4.5. Single Step

4.5.1. Step Bit In Dcsr

This method is only available to external debuggers, and is the preferred way to single step.

An external debugger can cause a halted hart to execute a single instruction or trap and then re-enter
Debug Mode by setting step before resuming. If step is set when a hart resumes then it will single step,
regardless of the reason for resuming.
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If control is transferred to a trap handler while executing the instruction, then Debug Mode is re-
entered immediately after the PC is changed to the trap handler, and the appropriate tval and cause
registers are updated. In this case none of the trap handler is executed, and if the cause was a pending
interrupt no instructions might be executed at all.

If executing or fetching the instruction causes a trigger to fire with action=1, Debug Mode is re-entered
immediately after that trigger has fired. In that case cause is set to 2 (trigger) instead of 4 (single step).
Whether the instruction is executed or not depends on the specific configuration of the trigger.

If the instruction that is executed causes the PC to change to an address where an instruction fetch
causes an exception, that exception does not occur until the next time the hart is resumed. Similarly, a
trigger at the new address does not fire until the hart actually attempts to execute that instruction.

If the instruction being stepped over would normally stall the hart, then instead the instruction is
treated as a nop. This includes wfi, wrs.sto, and wrs.nto.

4.5.2. Icount Trigger

Native debuggers won’t have access to dcsr, but can use the icount trigger by setting count to 1.

This approach does have some limitations:

1. Interrupts will fire as usual. Debuggers that want to disable interrupts while stepping must disable
them by changing mstatus, and specially handle instructions that read mstatus.

2. wfi instructions are not treated specially and might take a very long time to complete.

This mechanism cleanly supports a system which supports multiple privilege levels, where the OS or a
debug stub runs in M-Mode while the program being debugged runs in a less privileged mode.
Systems that only support M-Mode can use icount as well, but count must be able to count several
instructions (depending on the software implementation). See Section B.3.1.

4.6. Reset
If the halt signal (driven by the hart’s halt request bit in the Debug Module) or hasresethaltreq are
asserted when a hart comes out of reset, the hart must enter Debug Mode before executing any
instructions, but after performing any initialization that would usually happen before the first
instruction is executed.

4.7. Halt
When a hart halts:

1. cause is updated.

2. prv and v are set to reflect current privilege mode.

3. dpc is set to the next instruction that should be executed.

4. If the current instruction can be partially executed and should be restarted to complete, then the
relevant state for that is updated. E.g. if a halt occurs during a partially executed vector instruction,
then vstart is updated, and dpc is updated to the address of the partially executed instruction.
This is analogous to how vector instructions behave for exceptions.
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5. The hart enters Debug Mode.

4.8. Resume
When a hart resumes:

1. pc changes to the value stored in dpc.

2. The current privilege mode and virtualization mode are changed to that specified by prv and v.

3. If the new privilege mode is less privileged than M-mode, MPRV in mstatus is cleared.

4. The hart is no longer in debug mode.

4.9. Core Debug Registers
The supported Core Debug Registers must be implemented for each hart that can be debugged. They
are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract debug
commands.

Attempts to access an unimplemented Core Debug Register raise an illegal instruction exception.

These registers are only accessible from Debug Mode.

Table 7. Core Debug Registers

Address Name Section

0x7b0 Debug Control and Status (dcsr) Section 4.9.1

0x7b1 Debug PC (dpc) Section 4.9.2

0x7b2 Debug Scratch Register 0 (dscratch0) Section 4.9.3

0x7b3 Debug Scratch Register 1 (dscratch1) Section 4.9.4

4.9.1. Debug Control and Status (dcsr, at 0x7b0)

Upon entry into Debug Mode, v and prv are updated with the privilege level the hart was previously in,
and cause is updated with the reason for Debug Mode entry. Other than these fields and nmip, the
other fields of dcsr are only writable by the external debugger.

Table 8 shows the priorities of reasons for entering Debug Mode. Implementations should implement
priorities as shown in the table. For compatibility with old versions of this spec, resethaltreq and
haltreq are allowed to be at different positions than shown as long as:

1. resethaltreq is higher priority than haltreq

2. the relative order of the other four causes is maintained

Table 8. Priority of reasons for entering Debug Mode from highest to lowest.

cause encoding Cause

5 resethaltreq

6 halt group

3 haltreq
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cause encoding Cause

2 trigger (See Table 13 for detailed priority)

1 ebreak

4 step



Note that mcontrol/mcontrol6 triggers which fire after the instruction which hit the
trigger are considered to be high priority causes on the subsequent instruction. Therefore,
an execute trigger with timing=after on an ebreak instruction is lower priority than the
ebreak itself because the trigger will fire after the ebreak instruction. For the same reason,
if a single instruction is stepped with both icount and step then the step has priority. See
Table 13 for the relative priorities of triggers with respect to the ebreak instruction.

Most multi-hart implementations will probably hardwire stoptime to 0, as the
implementation can get complicated and the benefit is small.

This CSR is read/write.

31 28 27 26 24 23 20 19 18 17 16 15 14

debugver 0 extcause 0 cetrig 0 ebreakvs ebreakvu ebreakm 0

4 1 3 4 1 1 1 1 1 1

13 12 11 10 9 8 6 5 4 3 2 1 0

ebreaks ebreaku stepie stopcount stoptime cause v mprven nmip step prv

1 1 1 1 1 3 1 1 1 1 2

Field Description Access Reset

 debugver 0 (none): There is no debug support.

4 (1.0): Debug support exists as it is described in this
document.

15 (custom): There is debug support, but it does not
conform to any available version of this spec.

R Preset

 extcause When cause is 7, this optional field contains the value of a
more specific halt reason than "other." Otherwise it
contains 0.

0 (critical error): The hart entered a critical error state, as
defined in the Smdbltrp extension.

All other values are reserved for future versions of this
spec, or for use by other RISC-V extensions.

R 0
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Field Description Access Reset

 cetrig This bit is part of Smdbltrp and only exists when that
extension is implemented.

0 (disabled): A hart in a critical error state does not enter
Debug Mode but instead asserts the critical-error signal to
the platform.

1 (enabled): A hart in a critical error state enters Debug
Mode instead of asserting the critical-error signal to the
platform. Upon such entry into Debug Mode, the cause
field is set to 7, and the extcause field is set to 0, indicating
a critical error triggered the Debug Mode entry. This cause
has the highest priority among all reasons for entering
Debug Mode. Resuming from Debug Mode following an
entry from the critical error state returns the hart to the
critical error state.



When cetrig is 1, resuming from Debug
Mode following an entry due to a critical
error will result in an immediate re-entry
into Debug Mode due to the critical error.
The debugger may resume with cetrig set to
0 to allow the platform defined actions on
critical-error signal to occur. Other possible
actions include initiating a hart or platform
reset using the Debug Module reset control.

R/W 0

 ebreakvs 0 (exception): ebreak instructions in VS-mode behave as
described in the Privileged Spec.

1 (debug mode): ebreak instructions in VS-mode enter
Debug Mode.

This bit is hardwired to 0 if the hart does not support
virtualization mode.

WARL 0

 ebreakvu 0 (exception): ebreak instructions in VU-mode behave as
described in the Privileged Spec.

1 (debug mode): ebreak instructions in VU-mode enter
Debug Mode.

This bit is hardwired to 0 if the hart does not support
virtualization mode.

WARL 0

 ebreakm 0 (exception): ebreak instructions in M-mode behave as
described in the Privileged Spec.

1 (debug mode): ebreak instructions in M-mode enter
Debug Mode.

R/W 0
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Field Description Access Reset

 ebreaks 0 (exception): ebreak instructions in S-mode behave as
described in the Privileged Spec.

1 (debug mode): ebreak instructions in S-mode enter
Debug Mode.

This bit is hardwired to 0 if the hart does not support S-
mode.

WARL 0

 ebreaku 0 (exception): ebreak instructions in U-mode behave as
described in the Privileged Spec.

1 (debug mode): ebreak instructions in U-mode enter
Debug Mode.

This bit is hardwired to 0 if the hart does not support U-
mode.

WARL 0

 stepie 0 (interrupts disabled): Interrupts (including NMI) are
disabled during single stepping with step set. This value
should be supported.

1 (interrupts enabled): Interrupts (including NMI) are
enabled during single stepping with step set.

Implementations may hard wire this bit to 0. In that case
interrupt behavior can be emulated by the debugger.

The debugger must not change the value of this bit while
the hart is running.

WARL 0

 stopcount 0 (normal): Increment counters as usual.

1 (freeze): Don’t increment any hart-local counters while in
Debug Mode or on ebreak instructions that cause entry
into Debug Mode. These counters include the instret
CSR. On single-hart cores cycle should be stopped, but on
multi-hart cores it must keep incrementing.

An implementation may hardwire this bit to 0 or 1.

WARL Preset

 stoptime 0 (normal): time continues to reflect mtime.

1 (freeze): time is frozen at the time that Debug Mode was
entered. When leaving Debug Mode, time will reflect the
latest value of mtime again.

While all harts have stoptime=1 and are in Debug Mode,
mtime is allowed to stop incrementing.

An implementation may hardwire this bit to 0 or 1.

WARL Preset
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Field Description Access Reset

 cause Explains why Debug Mode was entered.

When there are multiple reasons to enter Debug Mode in a
single cycle, hardware should set cause to the cause with
the highest priority. See Table 8 for priorities.

1 (ebreak): An ebreak instruction was executed.

2 (trigger): A Trigger Module trigger fired with action=1.

3 (haltreq): The debugger requested entry to Debug Mode
using haltreq.

4 (step): The hart single stepped because step was set.

5 (resethaltreq): The hart halted directly out of reset due to
resethaltreq It is also acceptable to report 3 when this
happens.

6 (group): The hart halted because it’s part of a halt group.
Harts may report 3 for this cause instead.

7 (other): The hart halted for a reason other than the ones
mentioned above. extcause may contain a more specific
reason.

R 0

 v Extends the prv field with the virtualization mode the hart
was operating in when Debug Mode was entered. The
encoding is described in Table 11. A debugger can change
this value to change the hart’s virtualization mode when
exiting Debug Mode. This bit is hardwired to 0 on harts
that do not support virtualization mode.

WARL 0

 mprven 0 (disabled): mprv in mstatus is ignored in Debug Mode.

1 (enabled): mprv in mstatus takes effect in Debug Mode.

Implementing this bit is optional. It may be tied to either 0
or 1.

WARL Preset

 nmip When set, there is a Non-Maskable-Interrupt (NMI)
pending for the hart.

Since an NMI can indicate a hardware error condition,
reliable debugging may no longer be possible once this bit
becomes set. This is implementation-dependent.

R 0

 step When set and not in Debug Mode, the hart will only
execute a single instruction and then enter Debug Mode.
See Section 4.5.1 for details.

The debugger must not change the value of this bit while
the hart is running.

R/W 0
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Field Description Access Reset

 prv Contains the privilege mode the hart was operating in
when Debug Mode was entered. The encoding is described
in Table 11. A debugger can change this value to change the
hart’s privilege mode when exiting Debug Mode.

Not all privilege modes are supported on all harts. If the
encoding written is not supported or the debugger is not
allowed to change to it, the hart may change to any
supported privilege mode.

WARL 3

4.9.2. Debug PC (dpc, at 0x7b1)

Upon entry to debug mode, dpc is updated with the virtual address of the next instruction to be
executed. The behavior is described in more detail in Table 9.

Table 9. Virtual address in DPC.

Cause Virtual Address in DPC

ebreak Address of the ebreak instruction

single step Address of the instruction that would be executed next if no debugging was going on.
Ie. pc + 4 for 32-bit instructions that don’t change program flow, the destination PC on

taken jumps/branches, etc.

trigger
module

The address of the next instruction to be executed at the time that debug mode was
entered. If the trigger is mcontrol and timing is 0 or if the trigger is mcontrol6 and

hit1 is 0, this corresponds to the address of the instruction which caused the trigger to
fire.

halt request Address of the next instruction to be executed at the time that debug mode was entered.

Executing the Program Buffer may cause the value of dpc to become UNSPECIFIED. If that is the case,
it must be possible to read/write dpc using an abstract command with postexec not set. The debugger
must attempt to save dpc between halting and executing a Program Buffer, and then restore dpc before
leaving Debug Mode.


Allowing dpc to become UNSPECIFIED upon Program Buffer execution allows for direct
implementations that don’t have a separate PC register, and do need to use the PC when
executing the Program Buffer.

If the Access Register abstract command supports reading dpc while the hart is running, then the
value read should be the address of a recently executed instruction.

If the Access Register abstract command supports writing dpc while the hart is running, then the
executing program should jump to the written address shortly after the write occurs.

The writability of dpc follows the same rules as mepc as defined in the Privileged Spec. In particular,
dpc must be able to hold all valid virtual addresses and the writability of the low bits depends on
IALIGN.

When resuming, the hart’s PC is updated to the virtual address stored in dpc. A debugger may write
dpc to change where the hart resumes.
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This CSR is read/write.

DXLEN-1 0

dpc

DXLEN

4.9.3. Debug Scratch Register 0 (dscratch0, at 0x7b2)

Optional scratch register that can be used by implementations that need it. A debugger must not write
to this register unless hartinfo explicitly mentions it (the Debug Module may use this register
internally).

This CSR is read/write.

DXLEN-1 0

dscratch0

DXLEN

4.9.4. Debug Scratch Register 1 (dscratch1, at 0x7b3)

Optional scratch register that can be used by implementations that need it. A debugger must not write
to this register unless hartinfo explicitly mentions it (the Debug Module may use this register
internally).

This CSR is read/write.

DXLEN-1 0

dscratch1

DXLEN

4.10. Virtual Debug Registers
A virtual register is one that doesn’t exist directly in the hardware, but that the debugger exposes as if
it does. Debug software should implement them, but hardware can skip this section. Virtual registers
exist to give users access to functionality that’s not part of standard debuggers without requiring them
to carefully modify debug registers while the debugger is also accessing those same registers.

Table 10. Virtual Core Debug Registers

Address Name Section

virtual Privilege Mode (priv) Section 4.10.1

4.10.1. Privilege Mode (priv, at virtual)

Users can read this register to inspect the privilege mode that the hart was running in when the hart
halted. Users can write this register to change the privilege mode that the hart will run in when it
resumes.

This register contains prv and v from dcsr, but in a place that the user is expected to access. The user
should not access dcsr directly, because doing so might interfere with the debugger.
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Table 11. Privilege Mode and Virtualization Mode Encoding

H extension supported v prv Abbreviation Name

No 0 0 U-mode User mode

No 0 1 S-mode Supervisor mode

No 0 3 M-mode Machine mode

Yes 0 0 U-mode User mode

Yes 0 1 HS-mode Hypervisor-enabled supervisor mode

Yes 0 3 M-mode Machine mode

Yes 1 0 VU-mode Virtual user mode

Yes 1 1 VS-mode Virtual supervisor mode

2 1 0

v prv

1 2

Field Description Access Reset

 v Contains the virtualization mode the hart was operating in
when Debug Mode was entered. The encoding is described
in Table 11, and matches the virtualization mode encoding
from the Privileged Spec. A user can write this value to
change the hart’s virtualization mode when exiting Debug
Mode.

WARL 0

 prv Contains the privilege mode the hart was operating in
when Debug Mode was entered. The encoding is described
in Table 11, and matches the privilege mode encoding from
the Privileged Spec. A user can write this value to change
the hart’s privilege mode when exiting Debug Mode.

R/W 0
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Chapter 5. Sdtrig (ISA Extension)
This chapter describes the Sdtrig ISA extension, which can be implemented independently of
functionality described in the other chapters. It consists exclusively of the Trigger Module (TM).

Triggers can cause a breakpoint exception, entry into Debug Mode, or a trace action without having to
execute a special instruction. This makes them invaluable when debugging code from ROM. They can
trigger on execution of instructions at a given memory address, or on the address/data in loads/stores.

If Sdtrig is implemented, the Trigger Module must support at least one trigger. Accessing trigger CSRs
that are not used by any of the implemented triggers must result in an illegal instruction exception.
M-Mode and Debug Mode accesses to trigger CSRs that are used by any of the implemented triggers
must succeed, regardless of the current type of the currently selected trigger.

A trigger matches when the conditions that it specifies (e.g. a load from a specific address) are met. A
trigger fires when a trigger that matches performs the action configured for that trigger.

Triggers do not fire while in Debug Mode.

5.1. Enumeration
Each trigger may support a variety of features. A debugger can build a list of all triggers and their
features as follows:

1. Write 0 to tselect. If this results in an illegal instruction exception, then there are no triggers
implemented.

2. Read back tselect and check that it contains the written value. If not, exit the loop.

3. Read tinfo.

4. If that caused an exception, the debugger must read tdata1 to discover the type. (If type is 0, this
trigger doesn’t exist. Exit the loop.)

5. If info is 1, this trigger doesn’t exist. Exit the loop.

6. Otherwise, the selected trigger supports the types discovered in info.

7. Repeat, incrementing the value in tselect.



The above algorithm reads back tselect so that implementations which have  triggers
only need to implement  bits of tselect.

The algorithm checks tinfo and type in case the implementation has  bits of tselect but
fewer than  triggers.

5.2. Actions
Triggers can be configured to take one of several actions when they fire. Table 12 lists all options.

Table 12. action encoding
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Value Description

0 Raise a breakpoint exception. (Used when software wants to use the trigger module without
an external debugger attached.) xepc must contain the virtual address of the next
instruction that must be executed to preserve the program flow.

1 Enter Debug Mode. dpc must contain the virtual address of the next instruction that must
be executed to preserve the program flow.
This action is only legal when the trigger’s dmode is 1. Since tdata1 is WARL, hardware must
prevent it from containing dmode=0 and action=1.
This action can only be supported if Sdext is implemented on the hart.

2 Trace on, described in the trace specification.

3 Trace off, described in the trace specification.

4 Trace notify, described in the trace specification.

5 Reserved for use by the trace specification.

8 - 9 Send a signal to TM external trigger output 0 or 1 (respectively).

other Reserved for future use.


Actions 8 and 9 are intended to increment custom event counters, but these signals could
also be brought to outputs for use by external logic.

5.3. Priority
Table 13 lists the synchronous exceptions from the Privileged Spec, and where the various types of
triggers fit in. The first 3 columns come from the Privileged Spec, and the final column shows where
triggers fit in. Priorities in the table are separated by horizontal lines, so e.g. etrigger and itrigger have
the same priority. If this table contradicts the table in the Privileged Spec, then the latter takes
precedence.

This table only applies if triggers are precise. Otherwise triggers will fire some indeterminate time
after the event, and the priority is irrelevant. When triggers are chained, the priority is the lowest
priority of the triggers in the chain.

Table 13. Synchronous exception priority in decreasing priority order.

Priority Exception
Code

Description Trigger

Highest 3
3
3
3

etrigger
icount
itrigger
mcontrol/mcontrol6 after (on
previous instruction)

3 Instruction address breakpoint mcontrol/mcontrol6 execute
address before

12, 20, 1 During instruction address
translation: First encountered
page fault, guest-page fault, or
access fault
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Priority Exception
Code

Description Trigger

1 With physical address for
instruction: Instruction access
fault

3 mcontrol/mcontrol6 execute
data before

2
22
0
8, 9, 10, 11
3
3

Illegal instruction
Virtual instruction
Instruction address misaligned
Environment call
Environment break
Load/Store/AMO address
breakpoint

mcontrol/mcontrol6 load/store
address before, store data before

4, 6 Optionally: Load/Store/AMO
address misaligned

13, 15, 21, 23, 5,
7

During address translation for
an explicit memory access: First
encountered page fault, guest-
page fault, or access fault

5, 7 With physical address for an
explicit memory access:
Load/store/AMO access fault

4, 6 If not higher priority:
Load/store/AMO address
misaligned

Lowest 3 mcontrol/mcontrol6 load data
before

When multiple triggers in the same priority fire at once, hit (if implemented) is set for all of them. If
more than one of these triggers has action=0 then tval is updated in accordance with one of them, but
which one is UNSPECIFIED . If one of these triggers has the "enter Debug Mode" action (1) and another
trigger has the "raise a breakpoint exception" action (0), the preferred behavior is to have both actions
take place. It is implementation-dependent which of the two happens first. This ensures both that the
presence of an external debugger doesn’t affect execution and that a trigger set by user code doesn’t
affect the external debugger. If this is not implemented, then the hart must enter Debug Mode and
ignore the breakpoint exception. In the latter case, hit of the trigger whose action is 0 must still be set,
giving a debugger an opportunity to handle this case. What happens with trace actions when triggers
with different actions are also firing is left to the trace specification.

5.4. Native Triggers
Triggers can be used for native debugging when action=0. If supported by the hart and desired by the
debugger, triggers will often be programmed to have m=0 so that when they fire they cause a
breakpoint exception to trap to a more privileged mode. That breakpoint exception can either be taken
in M-mode or it can be delegated to a less privileged mode. However, it is possible for triggers to fire in
the same mode that the resulting exception will be handled in.
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In these cases such a trigger may cause a breakpoint exception while already in a trap handler. This
might leave the hart unable to resume normal execution because state such as mcause and mepc would
be overwritten.



In particular, when action=0:

1. mcontrol and mcontrol6 triggers with m=1 can cause a breakpoint exception that is
taken from M-mode to M-mode (regardless of delegation).

2. mcontrol and mcontrol6 triggers with s=1 can cause a breakpoint exception that is
taken from S-mode to S-mode if medeleg [3]=1.

3. mcontrol6 triggers with vs=1 can cause a breakpoint exception that is taken from VS-
mode to VS-mode if medeleg [3]=1 and hedeleg [3]=1 .

4. icount triggers with m=1can cause a breakpoint exception that is taken from M-mode
to M-mode (regardless of delegation).

5. icount triggers with s=1 can cause a breakpoint exception that is taken from S-mode to
S-mode if medeleg [3]=1 .

6. icount triggers with vs=1 can cause a breakpoint exception that is taken from VS-mode
to VS-mode if medeleg [3]=1 and hedeleg [3]=1.

7. etrigger and itrigger triggers will always be taken from a trap handler before the first
instruction of the handler. If etrigger/itrigger is set to trigger on exception/interrupt X
and if X is delegated to mode Y then the trigger will cause a breakpoint exception that
is taken from mode Y to mode Y unless breakpoint exceptions are delegated to a more
privileged mode than Y.

8. tmexttrigger triggers are asynchronous and may occur in any mode and at any time.

Harts that support triggers with action=0 should implement one of the following two solutions to
solve the problem of reentrancy:

1. The hardware prevents triggers with action=0 from matching or firing while in M-mode and while
MIE in mstatus is 0. If medeleg [3]=1 then it prevents triggers with action=0 from matching or
firing while in S-mode and while SIE in sstatus is 0. If medeleg [3]=1 and hedeleg [3]=1 then it
prevents triggers with action=0 from matching or firing while in VS-mode and while SIE in
vstatus is 0.

2. mte and mpte in tcontrol is implemented. medeleg [3] is hard-wired to 0.



The first option has the limitation that interrupts might be disabled at times when a user
still might want triggers to fire. It has the benefit that breakpoints are not required to be
handled in M-mode.

The second option has the benefit that it only disables triggers during the trap handler,
though it requires specific software support for this debug feature in the M-mode trap
handlers. It can only work if breakpoints are not delegated to less privileged modes and
therefore targets primarily implementations without S-mode.

Because tcontrol is not accessible to S-mode, the second option can not be extended to
accommodate delegation without adding additional S-mode and VS-mode CSRs.

Both options prevent etrigger and itrigger from having any effect on exceptions and
interrupts that are handled in M-mode. They also prevent triggering during some initial
portion of each handler. Debuggers should use other mechanisms to debug these cases,
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such as patching the handler or setting a breakpoint on the instruction after MIE is
cleared.

5.5. Memory Access Triggers
mcontrol and mcontrol6 both enable triggers on memory accesses. This section describes for both of
them how certain corner cases are treated.

5.5.1. A Extension

If the A extension is supported, then triggers on loads/stores treat them as follows:

1. lr instructions are loads.

2. Successful sc instructions are stores.

3. It is UNSPECIFIED whether failing sc instructions are stores or not.

4. Each AMO instruction is a load for the read portion of the operation. The address is always
available to trigger on, although the value loaded might not be, depending on the hardware
implementation.

5. Each AMO instruction is a store for the write portion of the operation. The address is always
available to trigger on. Whether data store triggers match on AMOs is UNSPECIFIED.

6. If the destination register of any load or AMO is zero then it is UNSPECIFIED whether a data load
trigger will match.

5.5.2. Combined Accesses

Some instructions lead a hart to perform multiple memory accesses. This includes vector loads and
stores, as well as cm.push and cm.pop instructions. The Trigger Module should match such accesses as
if they all happened individually. E.g. a vector load should be treated as if it performed multiple loads
of size SEW (selected element width), and cm.push should be treated as if it performed multiple stores
of size XLEN.

5.5.3. Cache Operations

Cache operations are infrequently performed, and code that uses them can have hard-to-find bugs.
For the purposes of debug triggers, two classes of cache operations must match as stores:

1. Cache operations that enable software to maintain coherence between otherwise non-coherent
implicit and explicit memory accesses.

2. Cache operations that perform block writes of constant data.

Only triggers with size=0 and select=0 will match. Since cache operations affect multiple addresses,
there are multiple possible values to compare against. Implementations must implement one of the
following options. From most desirable to least desirable, they are:

1. Every address from the effective address rounded down to the nearest cache block boundary
(inclusive) to the effective address rounded up to the nearest cache block boundary (exclusive) is a
compare value.

2. The effective address rounded down to the nearest cache block boundary is a compare value.
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3. The effective address of the instruction is a compare value.

Cache operations encoded as HINTs do not match debug triggers.



The above language intends to capture the trigger behavior with respect to the cache
operations to be introduced in a forthcoming I/D consistency extension.

For RISC-V Base Cache Management Operation ISA Extensions 1.0.1, this means the
following:

1. cbo.clean, cbo.flush, and cbo.inval match as if they are stores because they
affect consistency.

2. cbo.zero matches as if it is a store because it performs a block write of constant data.

3. The prefetch instructions don’t match at all.

5.5.4. Address Matches

For address matches without a mask, tdata2 must be able to hold all valid addresses in all supported
translation modes. That means that after writing any of these valid addresses, the exact same value
XLEN-wide value is read back, including any high bits. An implementation may be able to optimize
the storage required, depending on the widest addresses it supports.



If physical addresses are less than XLEN bits wide, they are zero-extended. If virtual
addresses are less than XLEN bits wide, they are sign-extended. tdata2 must be
implemented with enough bits of storage to represent the full range of supported physical
and virtual address values when read by software and used by hardware.

5.5.4.1. Invalid Addresses

If tdata2 can hold any invalid addresses, then writes of an invalid address that can not be represented
as-is should be converted to a different invalid address that can be represented.

For invalid instruction fetch addresses and load and store effective addresses, the compare value may
be changed to a different invalid address.

In addition, an implementation may choose to inhibit all trigger matching against invalid addresses,
especially if there is no support for storage of any invalid address values in tdata2.

5.6. Multiple State Change Instructions
An instruction that performs multiple architectural state changes (e.g., register updates and/or
memory accesses) might cause a trigger to fire at an intermediate point in its execution. As a result,
architectural state changes up to that point might have been performed, while subsequent state
changes, starting from the event that activated the trigger, might not have been. The definition of such
an instruction will specify the order in which architectural state changes take place. Alternatively, it
may state that partial execution is not allowed, implying that a mid-execution trigger must prevent
any architectural state changes from occurring.

Debuggers won’t be aware if an instruction has been partially executed. When they resume execution,
they will execute the same instruction once more. Therefore, it’s crucial that partially executing the
instruction and then executing it again leaves the hart in a state closely resembling the state it would
have been in if the instruction had only been executed once.

5.6. Multiple State Change Instructions | Page 64

The RISC-V Debug Specification | © RISC-V



5.7. Trigger Module Registers
These registers are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract
debug commands. They are the only mechanism to access the triggers.

Almost all trigger functionality is optional. All tdata registers follow write-any-read-legal semantics. If
a debugger writes an unsupported configuration, the register will read back a value that is supported
(which may simply be a disabled trigger). This means that a debugger must always read back values it
writes to tdata registers, unless it already knows what is supported. Writes to one tdata register must
not modify the contents of other tdata registers, nor the configuration of any trigger besides the one
that is currently selected.

The combination of these rules means that a debugger cannot simply set a trigger by writing tdata1,
then tdata2, etc. The current value of tdata2 might not be legal with the new value of tdata1. To help
with this situation, it is guaranteed that writing 0 to tdata1 disables the trigger, and leaves it in a state
where tdata2 and tdata3 can be written with any value that makes sense for any trigger type supported
by this trigger.

As a result, a debugger can write any supported trigger as follows:

1. Write 0 to tdata1. (This will result in containing a non-zero value, since the register is WARL.)

2. Write desired values to tdata2 and tdata3.

3. Write desired value to tdata1.

Code that restores CSR context of triggers that might be configured to fire in the current privilege
mode must use this same sequence to restore the triggers. This avoids the problem of a partially
written trigger firing at a different time than is expected.

Attempts to access an unimplemented Trigger Module Register raise an illegal instruction exception.

The Trigger Module registers, except mscontext, scontext, and hcontext, are only accessible in
machine and Debug Mode to prevent untrusted user code from causing entry into Debug Mode
without the OS’s permission.

In this section XLEN refers to the effective XLEN in the current execution mode. On systems where
XLEN values can differ between modes, this is handled as follows. Fields retain their values regardless
of XLEN, which only affects where in the register these fields appear (e.g. type). Some fields are wider
when XLEN is 64 than when it is 32 (e.g. svalue). The high bits in such fields retain their value but are
not readable when XLEN is 32. A modification of a register when XLEN is 32 clears any inaccessible
bits in that register.

Table 14. Trigger Module Registers

Address Name Section

0x5a8 Supervisor Context (scontext) Section 5.7.8

0x6a8 Hypervisor Context (hcontext) Section 5.7.7

0x7a0 Trigger Select (tselect) Section 5.7.1

0x7a1 Trigger Data 1 (tdata1) Section 5.7.2

0x7a1 Match Control (mcontrol) Section 5.7.11

0x7a1 Match Control Type 6 (mcontrol6) Section 5.7.12
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Address Name Section

0x7a1 Instruction Count (icount) Section 5.7.13

0x7a1 Interrupt Trigger (itrigger) Section 5.7.14

0x7a1 Exception Trigger (etrigger) Section 5.7.15

0x7a1 External Trigger (tmexttrigger) Section 5.7.16

0x7a2 Trigger Data 2 (tdata2) Section 5.7.3

0x7a3 Trigger Data 3 (tdata3) Section 5.7.4

0x7a3 Trigger Extra (RV32) (textra32) Section 5.7.17

0x7a3 Trigger Extra (RV64) (textra64) Section 5.7.18

0x7a4 Trigger Info (tinfo) Section 5.7.5

0x7a5 Trigger Control (tcontrol) Section 5.7.6

0x7a8 Machine Context (mcontext) Section 5.7.9

0x7aa Machine Supervisor Context (mscontext) Section 5.7.10

5.7.1. Trigger Select (tselect, at 0x7a0)

This register determines which trigger is accessible through the other Trigger Module registers. It is
optional if no triggers are implemented. The set of accessible triggers must start at 0, and be
contiguous.

This register is WARL. Writes of values greater than or equal to the number of supported triggers may
result in a different value in this register than what was written or may point to a trigger where
type=0. To verify that what they wrote is a valid index, debuggers can read back the value and check
that tselect holds what they wrote and read tdata1 to see that type is non-zero.

Since triggers can be used both by Debug Mode and M-mode, the external debugger must restore this
register if it modifies it.

This CSR is read/write.

XLEN-1 0

index

XLEN

5.7.2. Trigger Data 1 (tdata1, at 0x7a1)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

This register is optional if no triggers are implemented.

Writing 0 to this register must result in a trigger that is disabled. If this trigger supports multiple
types, then the hardware should disable it by changing type to 15.

This CSR is read/write.
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XLEN-1 XLEN-4 XLEN-5 XLEN-6 0

type dmode data

4 1 XLEN - 5

Field Description Access Reset

 type 0 (none): There is no trigger at this tselect.

1 (legacy): The trigger is a legacy SiFive address match
trigger. These should not be implemented and aren’t
further documented here.

2 (mcontrol): The trigger is an address/data match trigger.
The remaining bits in this register act as described in
mcontrol.

3 (icount): The trigger is an instruction count trigger. The
remaining bits in this register act as described in icount.

4 (itrigger): The trigger is an interrupt trigger. The
remaining bits in this register act as described in itrigger.

5 (etrigger): The trigger is an exception trigger. The
remaining bits in this register act as described in etrigger.

6 (mcontrol6): The trigger is an address/data match
trigger. The remaining bits in this register act as described
in mcontrol6. This is similar to a type 2 trigger, but
provides additional functionality and should be used
instead of type 2 in newer implementations.

7 (tmexttrigger): The trigger is a trigger source external to
the TM. The remaining bits in this register act as described
in tmexttrigger.

12—14 (custom): These trigger types are available for non-
standard use.

15 (disabled): This trigger is disabled. In this state, tdata2
and tdata3 can be written with any value that is supported
for any of the types this trigger implements. The
remaining bits in this register, except for dmode, are
ignored.

Other values are reserved for future use.

WARL Preset
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Field Description Access Reset

 dmode If type is 0, then this bit is hard-wired to 0.

0 (both): Both Debug and M-mode can write the tdata
registers at the selected tselect.

1 (dmode): Only Debug Mode can write the tdata registers
at the selected tselect. Writes from other modes are
ignored.

This bit is only writable from Debug Mode. In ordinary
use, external debuggers will always set this bit when
configuring a trigger. When clearing this bit, debuggers
should also set the action field (whose location depends on
type) to something other than 1.

WARL 0

 data If type is 0, then this field is hard-wired to 0.

Trigger-specific data.

WARL Preset

5.7.3. Trigger Data 2 (tdata2, at 0x7a2)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

Trigger-specific data. It is optional if no implemented triggers use it.

If the trigger is disabled, then this register can be written with any value supported by any of the
trigger types supported by this trigger.

If XLEN is less than DXLEN, writes to this register are sign-extended.

This CSR is read/write.

XLEN-1 0

data

XLEN

5.7.4. Trigger Data 3 (tdata3, at 0x7a3)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

Trigger-specific data. It is optional if no implemented triggers use it.

If the trigger is disabled, then this register can be written with any value supported by any of the
trigger types supported by this trigger.

If XLEN is less than DXLEN, writes to this register are sign-extended.

This CSR is read/write.
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XLEN-1 0

data

XLEN

5.7.5. Trigger Info (tinfo, at 0x7a4)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

This register is optional if no triggers are implemented, or if type is not writable and version would be
0. In this case the debugger can read the only supported type from tdata1.

Writing this read/write CSR has no effect.

XLEN-1 32 31 24 23 16 15 0

0 version 0 info

XLEN - 32 8 8 16

Field Description Access Reset

 version Contains the version of the Sdtrig extension implemented.

0 (0): Supports triggers as described in this spec at commit
5a5c078, made on February 2, 2023.

In these older versions:

1. mcontrol6 has a timing bit identical to timing

2. hit0 behaves just as hit.

3. hit1 is read-only 0.

4. Encodings for size for access sizes larger than 64 bits
are different.

1 (1): Supports triggers as described in the ratified version
1.0 of this document.

R Preset

 info One bit for each possible type enumerated in tdata1. Bit N
corresponds to type N. If the bit is set, then that type is
supported by the currently selected trigger.

If the currently selected trigger doesn’t exist, this field
contains 1.

R Preset

5.7.6. Trigger Control (tcontrol, at 0x7a5)

This optional register is only accessible in M-mode and Debug Mode and provides various control bits
related to triggers.

This CSR is read/write.
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XLEN-1 8 7 6 4 3 2 0

0 mpte 0 mte 0

XLEN - 8 1 3 1 3

Field Description Access Reset

 mpte M-mode previous trigger enable field.

mpte and mte provide one solution to a problem regarding
triggers with action=0 firing in M-mode trap handlers. See
Section 5.4 for more details.

When any trap into M-mode is taken, mpte is set to the
value of mte.

WARL 0

 mte M-mode trigger enable field.

0 (disabled): Triggers with action=0 do not match/fire
while the hart is in M-mode.

1 (enabled): Triggers do match/fire while the hart is in M-
mode.

When any trap into M-mode is taken, mte is set to 0.
When mret is executed, mte is set to the value of mpte.

WARL 0

5.7.7. Hypervisor Context (hcontext, at 0x6a8)

This optional register may be implemented only if the H extension is implemented. If it is
implemented, mcontext must also be implemented.

This register is only accessible in HS-Mode, M-mode and Debug Mode. If Smstateen is implemented,
then accessibility of in HS-Mode is controlled by mstateenzero[57].

This register is an alias of the mcontext register, providing access to the hcontext field from HS-Mode.

5.7.8. Supervisor Context (scontext, at 0x5a8)

This optional register is only accessible in S/HS-mode, VS-mode, M-mode and Debug Mode.

Accessibility of this CSR is controlled by mstateenzero[57] and hstateenzero[57] in the Smstateen
extension. Enabling scontext can be a security risk in a virtualized system with a hypervisor that does
not swap scontext.

This CSR is read/write.

XLEN-1 32 31 0

0 data

XLEN - 32 32
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Field Description Access Reset

 data Supervisor mode software can write a context number to
this register, which can be used to set triggers that only fire
in that specific context.

An implementation may tie any number of high bits in
this field to 0. It’s recommended to implement 16 bits on
RV32 and 32 bits on RV64.

WARL 0

5.7.9. Machine Context (mcontext, at 0x7a8)

This register must be implemented if hcontext is implemented, and is optional otherwise. It is only
accessible in M-mode and Debug mode.


hcontext is primarily useful to set triggers on hypervisor systems that only fire when a
given VM is executing. It is also useful in systems where M-Mode implements something
like a hypervisor directly.

This CSR is read/write.

XLEN-1 14 13 0

0 hcontext

XLEN - 14 14

Field Description Access Reset

 hcontext M-Mode or HS-Mode (using hcontext) software can write a
context number to this register, which can be used to set
triggers that only fire in that specific context.

An implementation may tie any number of upper bits in
this field to 0. If the H extension is not implemented, it’s
recommended to implement 6 bits on RV32 and 13 bits on
RV64 (as visible through the mcontext register). If the H
extension is implemented, it’s recommended to
implement 7 bits on RV32 and 14 bits on RV64.

WARL 0

5.7.10. Machine Supervisor Context (mscontext, at 0x7aa)

This optional register is an alias for scontext. It is only accessible in S/HS-mode, M-mode and Debug
Mode. It is included for backward compatibility with version 0.13.


The encoding of this CSR does not conform to the CSR Address Mapping Convention in
the Privileged Spec. It is expected that new implementations will not support this encoding
and that new debuggers will not use this CSR if scontext is available.

5.7.11. Match Control (mcontrol, at 0x7a1)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.
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This register is accessible as tdata1 when type is 2. This trigger type is deprecated. It is included for
backward compatibility with version 0.13.


This trigger type only supports a subset of features of the newer mcontrol6. It is expected
that new implementations will not support this trigger type and that new debuggers will
not use it if mcontrol6 is available.

Address and data trigger implementation are heavily dependent on how the processor core is
implemented. To accommodate various implementations, execute, load, and store address/data
triggers may fire at whatever point in time is most convenient for the implementation. The debugger
may request specific timings as described in timing. Table 15 suggests timings for the best user
experience.

A chain of triggers that don’t all have the same timing value will never fire. That means to implement
the suggestions in Table 15, both timings should be supported on load address triggers that can be
chained with a load data trigger.

The Privileged Spec says that breakpoint exceptions that occur on instruction fetches, loads, or stores
update the tval CSR with either zero or the faulting virtual address. The faulting virtual address for
an mcontrol trigger with action=0 is the address being accessed and which caused that trigger to fire.
If multiple mcontrol triggers are chained then the faulting virtual address is the address which caused
any of the chained triggers to fire.

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set there
are satisfied.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-11 XLEN-12 23 22 21 20 19 18

type dmode maskmax 0 sizehi hit select timing

4 1 6 XLEN - 34 2 1 1 1

17 16 15 12 11 10 7 6 5 4 3 2 1 0

sizelo action chain match m 0 s u execute store load

2 4 1 4 1 1 1 1 1 1 1

Field Description Access Reset

 maskmax Specifies the largest naturally aligned powers-of-two
(NAPOT) range supported by the hardware when match is
1. The value is the logarithm base 2 of the number of bytes
in that range. A value of 0 indicates match 1 is not
supported. A value of 63 corresponds to the maximum
NAPOT range, which is 263 bytes in size.

R Preset

 sizehi This field only exists when XLEN is at least 64. It contains
the 2 high bits of the access size. The low bits come from
sizelo. See sizelo for how this is used.

WARL 0
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Field Description Access Reset

 hit If this bit is implemented then it must become set when
this trigger fires and may become set when this trigger
matches. The trigger’s user can set or clear it at any time. It
is used to determine which trigger(s) matched. If the bit is
not implemented, it is always 0 and writing it has no
effect.

WARL 0

 select This bit determines the contents of the XLEN-bit compare
values.

0 (address): There is at least one compare value and it
contains the lowest virtual address of the access. It is
recommended that there are additional compare values
for the other accessed virtual addresses. (E.g. on a 32-bit
read from 0x4000, the lowest address is 0x4000 and the
other addresses are 0x4001, 0x4002, and 0x4003.)

1 (data): There is exactly one compare value and it contains
the data value loaded or stored, or the instruction
executed. Any bits beyond the size of the data access will
contain 0.

WARL 0
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Field Description Access Reset

 timing 0 (before): The action for this trigger will be taken just
before the instruction that triggered it is retired, but after
all preceding instructions are retired. xepc or dpc
(depending on action) must be set to the virtual address of
the instruction that matched.

If this is combined with load and select=1 then a memory
access will be performed (including any side effects of
performing such an access) even though the load will not
update its destination register. Debuggers should consider
this when setting such breakpoints on, for example,
memory-mapped I/O addresses.

If an instruction matches this trigger and the instruction
performs multiple memory accesses, it is UNSPECIFIED
which memory accesses have completed before the trigger
fires.

1 (after): The action for this trigger will be taken after the
instruction that triggered it is retired. It should be taken
before the next instruction is retired, but it is better to
implement triggers imprecisely than to not implement
them at all. xepc or dpc (depending on action) must be set
to the virtual address of the next instruction that must be
executed to preserve the program flow.

Most hardware will only implement one timing or the
other, possibly dependent on select, execute, load, and
store. This bit primarily exists for the hardware to
communicate to the debugger what will happen. Hardware
may implement the bit fully writable, in which case the
debugger has a little more control.

Data load triggers with timing of 0 will result in the same
load happening again when the debugger lets the hart run.
For data load triggers, debuggers must first attempt to set
the breakpoint with timing of 1.

If a trigger with timing of 0 matches, it is implementation-
dependent whether that prevents a trigger with timing of 1
matching as well.

WARL 0
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Field Description Access Reset

 sizelo This field contains the 2 low bits of the access size. The
high bits come from sizehi. The combined value is
interpreted as follows:

0 (any): The trigger will attempt to match against an
access of any size. The behavior is only well-defined if
select=0, or if the access size is XLEN.

1 (8bit): The trigger will only match against 8-bit memory
accesses.

2 (16bit): The trigger will only match against 16-bit
memory accesses or execution of 16-bit instructions.

3 (32bit): The trigger will only match against 32-bit
memory accesses or execution of 32-bit instructions.

4 (48bit): The trigger will only match against execution of
48-bit instructions.

5 (64bit): The trigger will only match against 64-bit
memory accesses or execution of 64-bit instructions.

6 (80bit): The trigger will only match against execution of
80-bit instructions.

7 (96bit): The trigger will only match against execution of
96-bit instructions.

8 (112bit): The trigger will only match against execution of
112-bit instructions.

9 (128bit): The trigger will only match against 128-bit
memory accesses or execution of 128-bit instructions.

An implementation must support the value of 0, but all
other values are optional. When an implementation
supports address triggers (select=0), it is recommended
that those triggers support every access size that the hart
supports, as well as for every instruction size that the hart
supports.

Implementations such as RV32D or RV64V are able to
perform loads and stores that are wider than XLEN.
Custom extensions may also support instructions that are
wider than XLEN. Because tdata2 is of size XLEN, there is
a known limitation that data value triggers (select=1) can
only be supported for access sizes up to XLEN bits. When
an implementation supports data value triggers (select=1),
it is recommended that those triggers support every access
size up to XLEN that the hart supports, as well as for every
instruction length up to XLEN that the hart supports.

WARL 0
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Field Description Access Reset

 action The action to take when the trigger fires. The values are
explained in Table 12.

WARL 0

 chain 0 (disabled): When this trigger matches, the configured
action is taken.

1 (enabled): While this trigger does not match, it prevents
the trigger with the next index from matching.

A trigger chain starts on the first trigger with chain=1 after
a trigger with chain=0, or simply on the first trigger if that
has chain=1. It ends on the first trigger after that which
has chain=0. This final trigger is part of the chain. The
action on all but the final trigger is ignored. The action on
that final trigger will be taken if and only if all the triggers
in the chain match at the same time.

Debuggers should not terminate a chain with a trigger
with a different type. It is undefined when exactly such a
chain fires.

Because chain affects the next trigger, hardware must zero
it in writes to mcontrol that set dmode to 0 if the next
trigger has dmode of 1. In addition hardware should ignore
writes to mcontrol that set dmode to 1 if the previous
trigger has both dmode of 0 and chain of 1. Debuggers
must avoid the latter case by checking chain on the
previous trigger if they’re writing mcontrol.

Implementations that wish to limit the maximum length
of a trigger chain (eg. to meet timing requirements) may
do so by zeroing chain in writes to mcontrol that would
make the chain too long.

WARL 0
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Field Description Access Reset

 match 0 (equal): Matches when any compare value equals tdata2.

1 (napot): Matches when the top M bits of any compare
value match the top M bits of tdata2. M is XLEN-1 minus the
index of the least-significant bit containing 0 in tdata2.
Debuggers should only write values to tdata2 such that M +
maskmax ≥ XLEN and M > 0, otherwise it’s undefined on
what conditions the trigger will match.

2 (ge): Matches when any compare value is greater than
(unsigned) or equal to tdata2.

3 (lt): Matches when any compare value is less than
(unsigned) tdata2.

4 (mask low): Matches when  of any compare

value equals  of tdata2 after  of

the compare value is ANDed with XLEN-1:  of tdata2.

5 (mask high): Matches when XLEN-1:  of any

compare value equals  of tdata2 after XLEN-1

:  of the compare value is ANDed with XLEN-1

:  of tdata2.

8 (not equal): Matches when match=0 would not match.

9 (not napot): Matches when match=1 would not match.

12 (not mask low): Matches when match=4 would not
match.

13 (not mask high): Matches when match=5 would not
match.

Other values are reserved for future use.

All comparisons only look at the lower XLEN (in the
current mode) bits of the compare values and of tdata2.
When select=1 and access size is N, this is further reduced,
and comparisons only look at the lower N bits of the
compare values and of tdata2.

WARL 0

 m When set, enable this trigger in M-mode. WARL 0

 s When set, enable this trigger in S/HS-mode. This bit is
hard-wired to 0 if the hart does not support S-mode.

WARL 0

 u When set, enable this trigger in U-mode. This bit is hard-
wired to 0 if the hart does not support U-mode.

WARL 0

5.7. Trigger Module Registers | Page 77

The RISC-V Debug Specification | © RISC-V



Field Description Access Reset

 execute When set, the trigger fires on the virtual address or opcode
of an instruction that is executed.

WARL 0

 store When set, the trigger fires on the virtual address or data of
any store.

WARL 0

 load When set, the trigger fires on the virtual address or data of
any load.

WARL 0

5.7.12. Match Control Type 6 (mcontrol6, at 0x7a1)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

This register is accessible as tdata1 when type is 6.

Implementing this trigger as described here requires that version is 1 or higher, which in turn means
tinfo must be implemented.

This replaces mcontrol in newer implementations and serves to provide additional functionality.

Address and data trigger implementation are heavily dependent on how the processor core is
implemented. To accommodate various implementations, execute, load, and store address/data
triggers may fire at whatever point in time is most convenient for the implementation.

Table 15 suggests timings for the best user experience. The underlying principle is that firing just
before the instruction gives a user more insight, so is preferable. However, depending on the
instruction and conditions, it might not be possible to evaluate the trigger until the instruction has
partially executed. In that case it is better to let the instruction retire before the trigger fires, to avoid
extra memory accesses which might affect the state of the system.

Table 15. Suggested Trigger Timings

Match Type Suggested Trigger Timing

Execute Address Before

Execute Instruction Before

Execute Address+Instruction Before

Load Address Before

Load Data After

Load Address+Data After

Store Address Before

Store Data Before

Store Address+Data Before

A chain of triggers must only fire if every trigger in the chain was matched by the same instruction.

The Privileged Spec says that breakpoint exceptions that occur on instruction fetches, loads, or stores
update the tval CSR with either zero or the faulting virtual address. The faulting virtual address for
an mcontrol6 trigger with action=0 is the address being accessed and which caused that trigger to fire.
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If multiple mcontrol6 triggers are chained then the faulting virtual address is the address which
caused any of the chained triggers to fire.

In implementations that support match mode 1 (NAPOT), not all NAPOT ranges may be supported. All
NAPOT ranges between  and  are supported where . The value of maskmax6
can be determined by the debugger via the following sequence:

1. Set match=1.

2. Read match. If it is not 1 then NAPOT matching is not supported.

3. Write all ones to tdata2.

4. Read tdata2. The value of maskmax6 is the index of the most significant 0 bit plus 1.

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set there
are satisfied.



uncertain and uncertainen exist to accommodate systems where not every memory access
is fully observed by the Trigger Module. Possible examples include data values in far
AMOs, and the address/data/size of accesses by instructions that perform multiple
memory accesses, such as vector, push, and pop instructions.

While the uncertain mechanism exists to deal with these situations, it can lead to an
unusable number of false positives. Users will get a much better debug experience if the
TM does have perfect visibility into the details of every memory access.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 27 26 25 24 23 22 21 20 19 18 16

type dmode 0 uncertain hit1 vs vu hit0 select 0 size

4 1 XLEN - 32 1 1 1 1 1 1 2 3

15 12 11 10 7 6 5 4 3 2 1 0

action chain match m uncertainen s u execute store load

4 1 4 1 1 1 1 1 1 1

Field Description Access Reset

 uncertain If implemented, the TM updates this field every time the
trigger fires.

0 (certain): The trigger that fired satisfied the configured
conditions, or this bit is not implemented.

1 (uncertain): The trigger that fired might not have
perfectly satisfied the configured conditions. Due to the
implementation the hardware cannot be certain.

WARL 0

 vs When set, enable this trigger in VS-mode. This bit is hard-
wired to 0 if the hart does not support virtualization mode.

WARL 0

 vu When set, enable this trigger in VU-mode. This bit is hard-
wired to 0 if the hart does not support virtualization mode.

WARL 0
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Field Description Access Reset

 hit0 If they are implemented, hit1 (MSB) and hit0 (LSB)
combine into a single 2-bit field. The TM updates this field
when the trigger fires. After the debugger has seen the
update, it will normally write 0 to this field to so it can see
future changes.

If either of the bits is not implemented, the
unimplemented bits will be read-only 0.

0 (false): The trigger did not fire.

1 (before): The trigger fired before the instruction that
matched it was retired, but after all preceding instructions
are retired. This explicitly allows for instructions to be
partially executed, as described in Section 5.6.

xepc or dpc (depending on action) must be set to the
virtual address of the instruction that matched.

2 (after): The trigger fired after the instruction that
triggered and at least one additional instruction were
retired. xepc or dpc (depending on action) must be set to
the virtual address of the next instruction that must be
executed to preserve the program flow.

3 (immediately after): The trigger fired just after the
instruction that triggered it was retired, but before any
subsequent instructions were executed. xepc or dpc
(depending on action) must be set to the virtual address of
the next instruction that must be executed to preserve the
program flow.

If the instruction performed multiple memory accesses, all
of them have been completed.

WARL 0

 select This bit determines the contents of the XLEN-bit compare
values.

0 (address): There is at least one compare value and it
contains the lowest virtual address of the access. In
addition, it is recommended that there are additional
compare values for the other accessed virtual addresses
match. (E.g. on a 32-bit read from 0x4000, the lowest
address is 0x4000 and the other addresses are 0x4001,
0x4002, and 0x4003.)

1 (data): There is exactly one compare value and it contains
the data value loaded or stored, or the instruction
executed. Any bits beyond the size of the data access will
contain 0.

WARL 0
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Field Description Access Reset

 size 0 (any): The trigger will attempt to match against an
access of any size. The behavior is only well-defined if
select=0, or if the access size is XLEN.

1 (8bit): The trigger will only match against 8-bit memory
accesses.

2 (16bit): The trigger will only match against 16-bit
memory accesses or execution of 16-bit instructions.

3 (32bit): The trigger will only match against 32-bit
memory accesses or execution of 32-bit instructions.

4 (48bit): The trigger will only match against execution of
48-bit instructions.

5 (64bit): The trigger will only match against 64-bit
memory accesses or execution of 64-bit instructions.

6 (128bit): The trigger will only match against 128-bit
memory accesses or execution of 128-bit instructions.

An implementation must support the value of 0, but all
other values are optional. When an implementation
supports address triggers (select=0), it is recommended
that those triggers support every access size that the hart
supports, as well as for every instruction size that the hart
supports.

Implementations such as RV32D or RV64V are able to
perform loads and stores that are wider than XLEN.
Custom extensions may also support instructions that are
wider than XLEN. Because tdata2 is of size XLEN, there is
a known limitation that data value triggers (select=1) can
only be supported for access sizes up to XLEN bits. When
an implementation supports data value triggers (select=1),
it is recommended that those triggers support every access
size up to XLEN that the hart supports, as well as for every
instruction length up to XLEN that the hart supports.

WARL 0

 action The action to take when the trigger fires. The values are
explained in Table 12.

WARL 0
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Field Description Access Reset

 chain 0 (disabled): When this trigger matches, the configured
action is taken.

1 (enabled): While this trigger does not match, it prevents
the trigger with the next index from matching.

A trigger chain starts on the first trigger with chain=1 after
a trigger with chain=0, or simply on the first trigger if that
has chain=1. It ends on the first trigger after that which
has chain=0. This final trigger is part of the chain. The
action on all but the final trigger is ignored. The action on
that final trigger will be taken if and only if all the triggers
in the chain match at the same time.

Debuggers should not terminate a chain with a trigger
with a different type. It is undefined when exactly such a
chain fires.

Because chain affects the next trigger, hardware must zero
it in writes to mcontrol6 that set dmode to 0 if the next
trigger has dmode of 1. In addition hardware should ignore
writes to mcontrol6 that set dmode to 1 if the previous
trigger has both dmode of 0 and chain of 1. Debuggers
must avoid the latter case by checking chain on the
previous trigger if they’re writing mcontrol6.

Implementations that wish to limit the maximum length
of a trigger chain (eg. to meet timing requirements) may
do so by zeroing chain in writes to mcontrol6 that would
make the chain too long.

WARL 0
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Field Description Access Reset

 match 0 (equal): Matches when any compare value equals tdata2.

1 (napot): Matches when the top M bits of any compare
value match the top M bits of tdata2. M is XLEN-1 minus the
index of the least-significant bit containing 0 in tdata2.
tdata2 is WARL and if bits maskmax6-1:0 are written with
all ones then bit maskmax6-1 will be set to 0 while the
values of bits maskmax6-2:0 are UNSPECIFIED. Legal
values for tdata2 require M + maskmax6 ≥ XLEN and M > 0.
See above for how to determine maskmax6.

2 (ge): Matches when any compare value is greater than
(unsigned) or equal to tdata2.

3 (lt): Matches when any compare value is less than
(unsigned) tdata2.

4 (mask low): Matches when  of any compare

value equals  of tdata2 after  of

the compare value is ANDed with XLEN-1:  of tdata2.

5 (mask high): Matches when XLEN-1:  of any

compare value equals  of tdata2 after XLEN-1

:  of the compare value is ANDed with XLEN-1

:  of tdata2.

8 (not equal): Matches when match =0 would not match.

9 (not napot): Matches when match =1 would not match.

12 (not mask low): Matches when match =4 would not
match.

13 (not mask high): Matches when match =5 would not
match.

Other values are reserved for future use.

All comparisons only look at the lower XLEN (in the
current mode) bits of the compare values and of tdata2.
When select=1 and access size is N, this is further reduced,
and comparisons only look at the lower N bits of the
compare values and of tdata2.

WARL 0

 m When set, enable this trigger in M-mode. WARL 0
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Field Description Access Reset

 uncertainen 0 (disabled): This trigger will only match if the hardware
can perfectly evaluate it.

1 (enabled): This trigger will match if it’s possible that it
would match if the Trigger Module had perfect
information about the operations being performed.

WARL 0

 s When set, enable this trigger in S/HS-mode. This bit is
hard-wired to 0 if the hart does not support S-mode.

WARL 0

 u When set, enable this trigger in U-mode. This bit is hard-
wired to 0 if the hart does not support U-mode.

WARL 0

 execute When set, the trigger fires on the virtual address or opcode
of an instruction that is executed.

WARL 0

 store When set, the trigger fires on the virtual address or data of
any store.

WARL 0

 load When set, the trigger fires on the virtual address or data of
any load.

WARL 0

5.7.13. Instruction Count (icount, at 0x7a1)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

This register is accessible as tdata1 when type is 3.

This trigger matches when:

1. An instruction retires after having been fetched in a privilege mode where the trigger is enabled.
This explicitly includes all RET instructions from various modes.

2. A trap is taken from a privilege mode where the trigger is enabled. This explicitly includes traps
taken due to interrupts.

If more than one of the above events occur during a single instruction execution, the trigger still only
matches once for that instruction.



For use in single step, icount must match for traps where the instruction will not be
reexecuted after the handler, such as illegal instructions that are emulated by privileged
software and the instruction being emulated never retires. Ideally, icount would not match
for traps where the instruction will later be retried by the handler, such as page faults
where privileged software modifies the page tables and returns to the faulting instruction
which ultimately retires. Trying to distinguish the two cases leads to complex rules, so
instead the rule is simply that all traps match. See also Section 4.5.2.

When count is greater than 1 and the trigger matches, then count is decremented by 1.

When count is 1 and the trigger matches, then pending becomes set. In addition count will become 0
unless it is hard-wired to 1.

The only exception to the above is when the instruction the trigger matched on is a write to the icount
trigger. In that case pending might or might not become set if count was 1. Afterwards count contains
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the newly written value.

When count is 0 it stays at 0 until explicitly written.

When pending is set, the trigger fires just before any further instructions are executed in a mode
where the trigger is enabled. As the trigger fires, pending is cleared. In addition, if count is hard-wired
to 1 then m, s, u, vs, and vu are all cleared.

If the trigger fires with action=0 then zero is written to the tval CSR on the breakpoint trap.



The intent of pending is to cleanly handle the case where action is 0, m is 0, u is 1, count is
1, and the U-mode instruction being executed causes a trap into M-mode. In that case we
want the entire M-mode handler to be executed, and the debug trap to be taken before the
next U-mode instruction.


This trigger type is intended to be used as a single step for software monitor programs or
native debug. Systems that support multiple privilege modes that want to debug software
running in lower privilege modes don’t need to support count greater than 1.

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set there
are satisfied.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 27 26 25 24 23 10 9 8 7 6 5 0

type dmode 0 vs vu hit count m pending s u action

4 1 XLEN - 32 1 1 1 14 1 1 1 1 6

Field Description Access Reset

 vs When set, enable this trigger in VS-mode. This bit is hard-
wired to 0 if the hart does not support virtualization mode.

WARL 0

 vu When set, enable this trigger in VU-mode. This bit is hard-
wired to 0 if the hart does not support virtualization mode.

WARL 0

 hit If this bit is implemented, the hardware sets it when this
trigger fires. The trigger’s user can set or clear it at any
time. It is used to determine which trigger(s) fires. If the
bit is not implemented, it is always 0 and writing it has no
effect.

WARL 0

 count The trigger will generally fire after count instructions in
enabled modes have been executed. See above for the
precise behavior.

WARL 1

 m When set, enable this trigger in M-mode. WARL 0

 pending This bit becomes set when count is decremented from 1 to
0. It is cleared when the trigger fires, which will happen
just before executing the next instruction in one of the
enabled modes.

R/W 0

 s When set, enable this trigger in S/HS-mode. This bit is
hard-wired to 0 if the hart does not support S-mode.

WARL 0
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Field Description Access Reset

 u When set, enable this trigger in U-mode. This bit is hard-
wired to 0 if the hart does not support U-mode.

WARL 0

 action The action to take when the trigger fires. The values are
explained in Table 12.

WARL 0

5.7.14. Interrupt Trigger (itrigger, at 0x7a1)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

This register is accessible as tdata1 when type is 4.

This trigger can fire when an interrupt trap is taken.

It can be enabled for individual interrupt numbers by setting the bit corresponding to the interrupt
number in tdata2. The interrupt number is interpreted in the mode that the trap handler executes in.
(E.g. virtualized interrupt numbers are not the same in every mode.) In addition the trigger can be
enabled for non-maskable interrupts using nmi.



If XLEN is 32, then it is not possible to set a trigger for interrupts with Exception Code
larger than 31. A future version of the RISC-V Privileged Spec will likely define interrupt
Exception Codes 32 through 47. Some of those numbers are already being used by the
RISC-V Advanced Interrupt Architecture.

Hardware may only support a subset of interrupts for this trigger. A debugger must read back tdata2
after writing it to confirm the requested functionality is actually supported.

When the trigger matches, it fires after the trap occurs, just before the first instruction of the trap
handler is executed. If action=0, the standard CSRs are updated for taking the breakpoint trap, and
zero is written to the relevant tval CSR. If the breakpoint trap does not go to a higher privilege mode,
this will lose CSR information for the original trap. See Section 5.4 for more information about this
case.

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set there
are satisfied.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-7 13 12 11 10 9 8 7 6 5 0

type dmode hit 0 vs vu nmi m 0 s u action

4 1 1 XLEN - 19 1 1 1 1 1 1 1 6

Field Description Access Reset

 hit If this bit is implemented, the hardware sets it when this
trigger matches. The trigger’s user can set or clear it at any
time. It is used to determine which trigger(s) matched. If
the bit is not implemented, it is always 0 and writing it has
no effect.

WARL 0
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Field Description Access Reset

 vs When set, enable this trigger for interrupts that are taken
from VS mode. This bit is hard-wired to 0 if the hart does
not support virtualization mode.

WARL 0

 vu When set, enable this trigger for interrupts that are taken
from VU mode. This bit is hard-wired to 0 if the hart does
not support virtualization mode.

WARL 0

 nmi When set, non-maskable interrupts cause this trigger to
fire if the trigger is enabled for the current mode.

WARL 0

 m When set, enable this trigger for interrupts that are taken
from M mode.

WARL 0

 s When set, enable this trigger for interrupts that are taken
from S/HS mode. This bit is hard-wired to 0 if the hart
does not support S-mode.

WARL 0

 u When set, enable this trigger for interrupts that are taken
from U mode. This bit is hard-wired to 0 if the hart does
not support U-mode.

WARL 0

 action The action to take when the trigger fires. The values are
explained in Table 12.

WARL 0

5.7.15. Exception Trigger (etrigger, at 0x7a1)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

This register is accessible as tdata1 when type is 5.

This trigger may fire on up to XLEN of the Exception Codes defined in mcause (described in the
Privileged Spec, with Interrupt=0). Those causes are configured by writing the corresponding bit in
tdata2. (E.g. to trap on an illegal instruction, the debugger sets bit 2 in tdata2.)


If XLEN is 32, then it is not possible to set a trigger on Exception Codes higher than 31. A
future version of the RISC-V Privileged Spec will likely define Exception Codes 32 through
47.

Hardware may support only a subset of exceptions. A debugger must read back tdata2 after writing it
to confirm the requested functionality is actually supported.

When the trigger matches, it fires after the trap occurs, just before the first instruction of the trap
handler is executed. If action=0, the standard CSRs are updated for taking the breakpoint trap, and
zero is written to the relevant tval CSR. If the breakpoint trap does not go to a higher privilege mode,
this will lose CSR information for the original trap. See Section 5.4 for more information about this
case.

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set there
are satisfied.

This CSR is read/write.
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XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-7 13 12 11 10 9 8 7 6 5 0

type dmode hit 0 vs vu 0 m 0 s u action

4 1 1 XLEN - 19 1 1 1 1 1 1 1 6

Field Description Access Reset

 hit If this bit is implemented, the hardware sets it when this
trigger matches. The trigger’s user can set or clear it at any
time. It is used to determine which trigger(s) matched. If
the bit is not implemented, it is always 0 and writing it has
no effect.

WARL 0

 vs When set, enable this trigger for exceptions that are taken
from VS mode. This bit is hard-wired to 0 if the hart does
not support virtualization mode.

WARL 0

 vu When set, enable this trigger for exceptions that are taken
from VU mode. This bit is hard-wired to 0 if the hart does
not support virtualization mode.

WARL 0

 m When set, enable this trigger for exceptions that are taken
from M mode.

WARL 0

 s When set, enable this trigger for exceptions that are taken
from S/HS mode. This bit is hard-wired to 0 if the hart
does not support S-mode.

WARL 0

 u When set, enable this trigger for exceptions that are taken
from U mode. This bit is hard-wired to 0 if the hart does
not support U-mode.

WARL 0

 action The action to take when the trigger fires. The values are
explained in Table 12.

WARL 0

5.7.16. External Trigger (tmexttrigger, at 0x7a1)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

This register is accessible as tdata1 when type is 7.

This trigger fires when any selected TM external trigger input signals. Up to 16 TM external trigger
inputs coming from other blocks outside the TM, (e.g. signaling an hpmcounter overflow) can be
selected. Hardware may support none or just a few TM external trigger inputs (starting with TM
external trigger input 0 and continuing sequentially). Unsupported inputs are hardwired to be
inactive.

If the trigger fires with action=0 then zero is written to the tval CSR on the breakpoint trap. This
trigger fires asynchronously but it is subject to delegation by medeleg[3] like the other triggers.

The TM external trigger input can signal when the trigger is prevented from firing due to one of the
mechanisms in Section 5.4. An implementation may either ignore the signal altogether when it cannot
fire (dropping the trigger event) or it may hold the action as pending and fire the trigger once it is legal
to do so.

 intctl is intended to be used by the clicinttrig mechanism from the Core-Local
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Interrupt Controller (CLIC) RISC-V Privileged Architecture Extensions.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-7 23 22 21 6 5 0

type dmode hit 0 intctl select action

4 1 1 XLEN - 29 1 16 6

Field Description Access Reset

 hit If this bit is implemented, the hardware sets it when this
trigger matches. The trigger’s user can set or clear it at any
time. It is used to determine which trigger(s) matched. If
the bit is not implemented, it is always 0 and writing it has
no effect.

WARL 0

 intctl This optional bit, when set, causes this trigger to fire
whenever an attached interrupt controller signals a trigger.

WARL 0

 select Selects any combination of up to 16 TM external trigger
inputs that cause this trigger to fire.

WARL 0

 action The action to take when the trigger fires. The values are
explained in Table 12.

WARL 0

5.7.17. Trigger Extra (RV32) (textra32, at 0x7a3)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

This register is accessible as tdata3 when type is 2, 3, 4, 5, or 6 and XLEN=32.

If DXLEN >= 64, then this register provides access to the low bits of each field defined in textra64.
Writes to this register will clear the high bits of the corresponding fields in textra64.

All functionality in this register is optional. Any number of upper bits of mhvalue and svalue may be
tied to 0. mhselect and sselect may only support 0 (ignore).

Byte-granular comparison of scontext to svalue allows scontext to be defined to include more than one
element of comparison. For example, software instrumentation can program the scontext value to be
the concatenation of different ID contexts such as process ID and thread ID. The user can then
program byte compares based on sbytemask to include one or more of the contexts in the compare.

Byte masking only applies to scontext comparison; i.e when sselect is 1.


Note that sselect and mhselect filtering apply in all modes, including M-mode and S-
mode. If desired, debuggers can use a trigger’s mode filtering bits to restrict the matching
to modes where it considers ASID/VMID/scontext/hcontext to be active.

This CSR is read/write.

31 26 25 23 22 20 19 18 17 2 1 0

mhvalue mhselect 0 sbytemask svalue sselect

6 3 3 2 16 2
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Field Description Access Reset

 mhvalue Data used together with mhselect. WARL 0

 mhselect 0 (ignore): Ignore mhvalue.

4 (mcontext): This trigger will only match or fire if the low
bits of mcontext/hcontext equal mhvalue.

1, 5 (mcontext_select): This trigger will only match or fire
if the low bits of mcontext/hcontext equal {mhvalue,
mhselect[2]}.

2, 6 (vmid_select): This trigger will only match or fire if
VMID in hgatp equals the lower VMIDMAX (defined in the
Privileged Spec) bits of {mhvalue, mhselect[2]}.

3, 7 (reserved): Reserved.

If the H extension is not supported, the only legal values
are 0 and 4.

WARL 0

 sbytemask When the least significant bit of this field is 1, it causes bits
7:0 in the comparison to be ignored, when sselect=1. When
the next most significant bit of this field is 1, it causes bits
15:8 to be ignored in the comparison, when sselect=1.

WARL 0

 svalue Data used together with sselect.

This field should be tied to 0 when S-mode is not
supported.

WARL 0

 sselect 0 (ignore): Ignore svalue.

1 (scontext): This trigger will only match or fire if the low
bits of scontext equal svalue.

2 (asid): This trigger will only match or fire if:

• the mode is VS-mode or VU-mode and ASID in vsatp
equals the lower ASIDMAX (defined in the Privileged
Spec) bits of svalue.

• in all other modes, ASID in satp equals the lower
ASIDMAX (defined in the Privileged Spec) bits of
svalue.

This field should be tied to 0 when S-mode is not
supported.

WARL 0

5.7.18. Trigger Extra (RV64) (textra64, at 0x7a3)

This register provides access to the trigger selected by tselect. The reset values listed here apply to
every underlying trigger.

This register is accessible as tdata3 when type is 2, 3, 4, 5, or 6 and XLEN=64. The function of the
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fields are defined above, in textra32. This register retains its value when XLEN changes. When
XLEN=32 some of the bits can be accessed through textra32.

Byte-granular comparison of scontext to svalue in textra64 allows scontext to be defined to include
more than one element of comparison. For example, software instrumentation can program the
scontext value to be the concatenation of different ID contexts such as process ID and thread ID. The
user can then program byte compares based on sbytemask to include one or more of the contexts in
the compare.

Byte masking only applies to scontext comparison; i.e when sselect is 1.

This CSR is read/write.

63 51 50 48 47 40 39 36 35 34 33 2 1 0

mhvalue mhselect 0 sbytemask 0 svalue sselect

13 3 8 4 2 32 2

Field Description Access Reset

 sbytemask When the least significant bit of this field is 1, it causes bits
7:0 in the comparison to be ignored, when sselect=1.
Likewise, the second bit controls the comparison of bits
15:8, third bit controls the comparison of bits 23:16, and
fourth bit controls the comparison of bits 31:24.

WARL 0
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Chapter 6. Debug Transport Module
(DTM) (non-ISA extension)
Debug Transport Modules provide access to the DM over one or more transports (e.g. JTAG or USB).

There may be multiple DTMs in a single hardware platform. Ideally every component that
communicates with the outside world includes a DTM, allowing a hardware platform to be debugged
through every transport it supports. For instance a USB component could include a DTM. This would
trivially allow any hardware platform to be debugged over USB. All that is required is that the USB
module already in use also has access to the Debug Module Interface.

Using multiple DTMs at the same time is not supported. It is left to the user to ensure this does not
happen.

This specification defines a JTAG DTM in Section 6.1. Additional DTMs may be added in future
versions of this specification.

An implementation can be compatible with this specification without implementing any of this
section. In that case it must be advertised as conforming to "RISC-V Debug Specification, with custom
DTM." If the JTAG DTM described here is implemented, it must be advertised as conforming to the
"RISC-V Debug Specification, with JTAG DTM.""

6.1. JTAG Debug Transport Module
This Debug Transport Module is based around a normal JTAG Test Access Port (TAP). The JTAG TAP
allows access to arbitrary JTAG registers by first selecting one using the JTAG instruction register (IR),
and then accessing it through the JTAG data register (DR).

6.1.1. JTAG Background

JTAG refers to IEEE Std 1149.1-2013. It is a standard that defines test logic that can be included in an
integrated circuit to test the interconnections between integrated circuits, test the integrated circuit
itself, and observe or modify circuit activity during the component’s normal operation. This
specification uses the latter functionality. The JTAG standard defines a Test Access Port (TAP) that can
be used to read and write a few custom registers, which can be used to communicate with debug
hardware in a component.

6.1.2. JTAG DTM Registers

JTAG TAPs used as a DTM must have an IR of at least 5 bits. When the TAP is reset, IR must default to
00001, selecting the IDCODE instruction. A full list of JTAG registers along with their encoding is in
Table 16. If the IR actually has more than 5 bits, then the encodings in Table 16 should be extended
with 0’s in their most significant bits, except for the 0x1f encoding of BYPASS, which must be
extended with 1’s in the most significant bits. The only regular JTAG registers a debugger might use are
BYPASS and IDCODE, but this specification leaves IR space for many other standard JTAG
instructions. Unimplemented instructions must select the BYPASS register.

Table 16. JTAG DTM TAP Registers
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Addr
ess

Name Description Section

0x0
0

bypass JTAG recommends this encoding

0x01 idcode To identify a specific silicon version Section 6.1.3

0x10 DTM Control and Status (dtmcs) For Debugging Section 6.1.4

0x11 Debug Module Interface Access (dmi) For Debugging Section 6.1.5

0x12 reserved (bypass) Reserved for future RISC-V debugging

0x13 reserved (bypass) Reserved for future RISC-V debugging

0x14 reserved (bypass) Reserved for future RISC-V debugging

0x15 reserved (bypass) Reserved for future RISC-V standards

0x16 reserved (bypass) Reserved for future RISC-V standards

0x17 reserved (bypass) Reserved for future RISC-V standards

0x1f bypass JTAG requires this encoding Section 6.1.6

6.1.3. IDCODE (at 0x01)

This register is selected (in IR) when the TAP state machine is reset. Its definition is exactly as defined
in IEEE Std 1149.1-2013.

This entire register is read-only.

31 28 27 12 11 1 0

Version PartNumber ManufId 1

4 16 11 1

Field Description Access Reset

 Version Identifies the release version of this part. R Preset

 PartNumber Identifies the designer’s part number of this part. R Preset

 ManufId Identifies the designer/manufacturer of this part. Bits 6:0
must be bits 6:0 of the designer/manufacturer’s
Identification Code as assigned by JEDEC Standard
JEP106. Bits 10:7 contain the modulo-16 count of the
number of continuation characters (0x7f) in that same
Identification Code.

R Preset

6.1.4. DTM Control and Status (dtmcs, at 0x10)

The size of this register will remain constant in future versions so that a debugger can always
determine the version of the DTM.

31 21 20 18 17 16 15 14 12 11 10 9 4 3 0

0 errinfo dtmhardreset dmireset 0 idle dmistat abits version

11 3 1 1 1 3 2 6 4
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Field Description Access Reset

 errinfo This optional field may provide additional detail about an
error that occurred when communicating with a DM. It is
updated whenever op is updated by the hardware or when
1 is written to dmireset.

0 (not implemented): This field is not implemented.

1 (dmi error): There was an error between the DTM and
DMI.

2 (communication error): There was an error between the
DMI and a DMI subordinate.

3 (device error): The DMI subordinate reported an error.

4 (unknown): There is no error to report, or no further
information available about the error. This is the reset
value if the field is implemented.

Other values are reserved for future use by this
specification.

R 4

 dtmhardreset Writing 1 to this bit does a hard reset of the DTM, causing
the DTM to forget about any outstanding DMI
transactions, and returning all registers and internal state
to their reset value. In general this should only be used
when the Debugger has reason to expect that the
outstanding DMI transaction will never complete (e.g. a
reset condition caused an inflight DMI transaction to be
cancelled).

W1 -

 dmireset Writing 1 to this bit clears the sticky error state and resets
errinfo, but does not affect outstanding DMI transactions.

W1 -

 idle This is a hint to the debugger of the minimum number of
cycles a debugger should spend in Run-Test/Idle after
every DMI scan to avoid a `busy' return code (dmistat of 3).
A debugger must still check dmistat when necessary.

0: It is not necessary to enter Run-Test/Idle at all.

1: Enter Run-Test/Idle and leave it immediately.

2: Enter Run-Test/Idle and stay there for 1 cycle before
leaving.

And so on.

R Preset

 dmistat Read-only alias of op. R 0

 abits The size of address in dmi. R Preset
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Field Description Access Reset

 version 0 (0.11): Version described in spec version 0.11.

1 (1.0): Version described in spec versions 0.13 and 1.0.

15 (custom): Version not described in any available version
of this spec.

R 1

6.1.5. Debug Module Interface Access (dmi, at 0x11)

This register allows access to the Debug Module Interface (DMI).

In Update-DR, the DTM starts the operation specified in op unless the current status reported in op is
sticky.

In Capture-DR, the DTM updates data with the result from that operation, updating op if the current
op isn’t sticky.

See Section B.2.1 for examples of how this is used.



The still-in-progress status is sticky to accommodate debuggers that batch together a
number of scans, which must all be executed or stop as soon as there’s a problem.

For instance a series of scans may write a Debug Program and execute it. If one of the
writes fails but the execution continues, then the Debug Program may hang or have other
unexpected side effects.

abits+33 34 33 2 1 0

address data op

abits 32 2

Field Description Access Reset

 address Address used for DMI access. In Update-DR this value is
used to access the DM over the DMI. op defines what this
register contains after every possible operation.

R/W 0

 data The data to send to the DM over the DMI during Update-
DR, and the data returned from the DM as a result of the
previous operation.

R/W 0
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Field Description Access Reset

 op When the debugger writes this field, it has the following
meaning:

0 (nop): Ignore data and address.

Don’t send anything over the DMI during Update-DR. This
operation should never result in a busy or error response.
The address and data reported in the following Capture-
DR are undefined.

This operation leaves the values in address and data
UNSPECIFIED.

1 (read): Read from address.

When this operation succeeds, address contains the
address that was read from, and data contains the value
that was read.

2 (write): Write data to address.

This operation leaves the values in address and data
UNSPECIFIED.

3 (reserved): Reserved.

When the debugger reads this field, it means the following:

0 (success): The previous operation completed
successfully.

1 (reserved): Reserved.

2 (failed): A previous operation failed. The data scanned
into dmi in this access will be ignored. This status is sticky
and can be cleared by writing dmireset in dtmcs.

This indicates that the DM itself or the DMI responded
with an error. There are no specified cases in which the
DM would respond with an error, and DMI is not required
to support returning errors.

If a debugger sees this status, there might be additional
information in errinfo.

3 (busy): An operation was attempted while a DMI request
is still in progress. The data scanned into dmi in this
access will be ignored. This status is sticky and can be
cleared by writing dmireset in dtmcs. If a debugger sees
this status, it needs to give the target more TCK edges
between Update-DR and Capture-DR. The simplest way to
do that is to add extra transitions in Run-Test/Idle.

R/W 0
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6.1.6. BYPASS (at 0x1f)

1-bit register that has no effect. It is used when a debugger does not want to communicate with this
TAP.

This entire register is read-only.

0

0

1

6.1.7. JTAG Connector

6.1.7.1. Recommended JTAG Connector

To make it easy to acquire debug hardware, this spec recommends a connector that is compatible with
the MIPI-10 .05 inch connector specification, as described in MIPI Debug & Trace Connector
Recommendations, Version 1.20, 2 July 2021.

The connector has .05 inch spacing, gold-plated male header with .016 inch thick hardened copper or
beryllium bronze square posts (SAMTEC FTSH or equivalent). Female connectors are compatible

 gold connectors.

Viewing the male header from above (the pins pointing at your eye), a target’s connector looks as it
does in Table 17. The function of each pin is described in Table 18.

Table 17. MIPI 10-pin JTAG + nRESET Connector Diagram

VREF DEBUG 1 2 TMS

GND 3 4 TCK

GND 5 6 TDO

GND or KEY 7 8 TDI

GND 9 10 nRESET

If a hardware platform requires nTRST then it is permissible to reuse the nRESET pin as the nTRST
signal, resulting in a MIPI 10-pin JTAG
nTRST connector.

6.1.7.2. Alternate JTAG Connector

The MIPI-10 connector should provide plenty of signals for all modern hardware. If a design does
need legacy JTAG signals, then the MIPI-20 connector should be used. Pins whose functionality isn’t
needed may be left unconnected.

Its physical connector is virtually identical to MIPI-10, except that it’s twice as long, supporting twice
as many pins. Its pinout is shown in Table 19. The function of each pin is described in Table 18.

Table 18. JTAG Connector Pin Functions
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Essential GND Connected to ground.

TCK JTAG TCK signal, driven by the debug adapter.

TDI JTAG TDI signal, driven by the debug adapter.

TDO JTAG TDO signal, driven by the target.

TMS JTAG TMS signal, driven by the debug adapter.

VREF
DEBUG

Reference voltage for logic high.

Recommen
ded

nRESET Open drain active low reset signal, usually driven by the debug adapter. The
signal may be used bi-directional to drive or sense the target reset signal.

Asserting reset should reset any RISC-V cores as well as any other
peripherals on the PCB. It should not reset the debug logic. This pin is

optional but strongly encouraged.
nRESET should never be connected to the TAP reset, otherwise the

debugger might not be able to debug through a reset to discover the cause of
a crash or to maintain execution control after the reset.

KEY This pin may be cut on the male and plugged on the female header to
ensure the header is always plugged in correctly. It is, however,

recommended to use this pin as an additional ground, to allow for fastest
TCK speeds. A shrouded connector should be used to prevent the cable from

being plugged in incorrectly.

Advanced EXT Reserved for custom use. Could be an input or an output.

TRIGIN Not used by this specification, to be driven by debug adapter. (Can be used
for extended functions like UART or boot mode selection by some debug

adapters).

TRIGOUT Not used by this specification, driven by the target.

Specialized nTRST Test reset, driven by the debug adapter. Asserting nTRST initializes the
JTAG DTM asynchronously. It is used in systems where the JTAG DTM is

not ready to be used after a normal power up. This signal is sometimes
called TRST*.

Legacy RTCK Return test clock, driven by the target. A target may relay the TCK signal
here once it has processed it, allowing a debugger to adjust its TCK

frequency in response.
This signal should only be used to support legacy components that rely on

this functionality.

nTRST_P
D

Test reset pull-down, driven by the debug adapter. Same function as nTRST,
but with pull-down resistor on target.

This signal should only be used to support legacy components that rely on
this functionality.

Table 19. MIPI 20-pin JTAG Connector Diagram

VREF DEBUG 1 2 TMS

GND 3 4 TCK

GND 5 6 TDO

GND or KEY 7 8 TDI
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GND 9 10 nRESET

GND 11 12 GND or RTCK

GND 13 14 NC or nTRST_PD

GND 15 16 nTRST or NC

GND 17 18 TRIGIN or NC

GND 19 20 TRIGOUT or GND

6.1.8. cJTAG

This spec does not have specific recommendations on how to use the cJTAG protocol.

When implementing cJTAG access to a JTAG DTM, the MIPI 10-pin Narrow JTAG connector should be
used. Pins whose functionality isn’t needed may be left unconnected.

Viewing the male header from above (the pins pointing at your eye), a target’s connector looks as it
does in Table 20.

Table 20. MIPI 10-pin Narrow JTAG Connector Diagram

VREF DEBUG 1 2 TMSC

GND 3 4 TCKC

GND 5 6 EXT or NC

GND or KEY 7 8 NC or nTRST_PD

GND 9 10 nRESET
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Appendix A: Hardware Implementations
Below are two possible implementations. A designer could choose one, mix and match, or come up
with their own design.

A.1. Abstract Command Based
Halting happens by stalling the hart execution pipeline.

Muxes on the register file(s) allow for accessing GPRs and CSRs using the Access Register abstract
command.

Memory is accessed using the Abstract Access Memory command or through System Bus Access.

This implementation could allow a debugger to collect information from the hart even when that hart
is unable to execute instructions.

A.2. Execution Based
This implementation only implements the Access Register abstract command for GPRs on a halted
hart, and relies on the Program Buffer for all other operations. It uses the hart’s existing pipeline and
ability to execute from arbitrary memory locations to avoid modifications to a hart’s datapath.

When the halt request bit is set, the Debug Module raises a special interrupt to the selected harts. This
interrupt causes each hart to enter Debug Mode and jump to a defined memory region that is serviced
by the DM and is only accessible to the harts in Debug Mode. Accesses to this memory should be
uncached to avoid side effects from debugging operations. When taking this jump, pc is saved to dpc
and cause is updated in dcsr. This jump is similar to a trap but it is not architecturally considered a
trap, so for instance doesn’t count as a trap for trigger behavior.

The code in the Debug Module causes the hart to execute a "park loop." In the park loop the hart writes
its mhartid to a memory location within the Debug Module to indicate that it is halted. To allow the
DM to individually control one out of several halted harts, each hart polls for flags in a DM-controlled
memory location to determine whether the debugger wants it to execute the Program Buffer or
perform a resume.

To execute an abstract command, the DM first populates some internal words of program buffer
according to command. When transfer is set, the DM populates these words with lw <gpr>,
0x400(zero) or sw 0x400(zero), <gpr>. 64- and 128-bit accesses use ld/sd and lq/sq respectively. If
transfer is not set, the DM populates these instructions as nop’s. If postexec is set, execution continues
to the debugger-controlled Program Buffer, otherwise the DM causes an ebreak to execute
immediately.

When ebreak is executed (indicating the end of the Program Buffer code) the hart returns to its park
loop. If an exception is encountered, the hart jumps to an address within the Debug Module. The code
there causes the hart to write to the Debug Module indicating an exception. Then the hart jumps back
to the park loop. The DM infers from the write that there was an exception, and sets cmderr
appropriately. Typically the hart will execute a fence instruction before entering the park loop, to
ensure that any effects from the abstract command, such as a write to data0, take effect before the DM
returns busy to 0.
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To resume execution, the debug module sets a flag which causes the hart to execute a dret. dret is an
instruction that only has meaning while in Debug Mode and not executing from the Program Buffer.
Its recommended encoding is 0x7b200073. When dret is executed, is restored from dpc and normal
execution resumes at the privilege set by prv and v.

data0 etc. are mapped into regular memory at an address relative to with only a 12-bit imm. The exact
address is an implementation detail that a debugger must not rely on. For example, the data registers
might be mapped to 0x400.

For additional flexibility, progbuf0, etc. are mapped into regular memory immediately preceding
data0, in order to form a contiguous region of memory which can be used for either program
execution or data transfer.

The PMP must not disallow fetches, loads, or stores in the address range associated with the Debug
Module when the hart is in Debug Mode, regardless of how the PMP is configured. The same is true of
PMA. Without this guarantee, the park loop would enter an infinite loop of traps and debug would not
be possible.

A.3. Debug Module Interface Signals
As stated in section Section 3.1 the details of the DMI are left to the system designer. It is quite often
the case that only one DTM and one DM is implemented. In this case it might be useful to comply
with the signals suggested in Table 21, which is the implementation used in the open-source rocket-
chip RISC-V core.

The DTM can start a request when the DM sets REQ_READY to 1. When this is the case REQ_OP can
be set to 1 for a read or 2 for a write request. The desired address is driven with the REQ_ADDRESS
signal. Finally REQ_VALID is set high, indicating to the DM that a valid request is pending.

The DM must respond to a request from the DTM when RSP_READY is high. The status of the
response is indicated by the RSP_OP signal (see op). The data of the response is driven to RSP_DATA.
A pending response is signalled by setting RSP_VALID.

Table 21. Signals for the suggested DMI between one DTM and one DM

Signal Width Source Description

REQ_VALID 1 DTM Indicates that a valid request is pending

REQ_READY 1 DM Indicates that the DM is able to process a request

REQ_ADDRESS abits DTM Requested address

REQ_DATA 32 DTM Requested data

REQ_OP 2 DTM Same meaning as the op field

RSP_VALID 1 DM Indicates that a valid respond is pending

RSP_READY 1 DTM Indicates that the DTM is able to process a respond

RSP_DATA 32 DM Response data

RSP_OP 2 DM Same meaning as the op field
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Appendix B: Debugger Implementation

B.1. C Header File
github.com/riscv/riscv-debug-spec contains instructions for generating a C header file that defines
macros for every field in every register/abstract command mentioned in this document.

B.2. External Debugger Implementation
This section details how an external debugger might use the described debug interface to perform
some common operations on RISC-V cores using the JTAG DTM described in Section 6.1. All these
examples assume a 32-bit core but it should be easy to adapt the examples to 64- or 128-bit cores.

To keep the examples readable, they all assume that everything succeeds, and that they complete
faster than the debugger can perform the next access. This will be the case in a typical JTAG setup.
However, the debugger must always check the sticky error status bits after performing a sequence of
actions. If it sees any that are set, then it should attempt the same actions again, possibly while adding
in some delay, or explicit checks for status bits.

B.2.1. Debug Module Interface Access

To read an arbitrary Debug Module register, select dmi, and scan in a value with op set to 1, and
address set to the desired register address. In Update-DR the operation will start, and in Capture-DR
its results will be captured into data. If the operation didn’t complete in time, op will be 3 and the
value in data must be ignored. The busy condition must be cleared by writing dmireset in dtmcs, and
then the second scan scan must be performed again. This process must be repeated until op returns 0.
In later operations the debugger should allow for more time between Update-DR and Capture-DR.

To write an arbitrary Debug Bus register, select dmi, and scan in a value with op set to 2, and address
and data set to the desired register address and data respectively. From then on everything happens
exactly as with a read, except that a write is performed instead of the read.

It should almost never be necessary to scan IR, avoiding a big part of the inefficiency in typical JTAG
use.

B.2.2. Checking for Halted Harts

A user will want to know as quickly as possible when a hart is halted (e.g. due to a breakpoint). To
efficiently determine which harts are halted when there are many harts, the debugger uses the
haltsum registers. Assuming the maximum number of harts exist, first it checks haltsum3 . For each
bit set there, it writes hartsel, and checks haltsum2. This process repeats through haltsum1 and
haltsum0. Depending on how many harts exist, the process should start at one of the lower haltsum
registers.

B.2.3. Halting

To halt one or more harts, the debugger selects them, sets haltreq, and then waits for allhalted to
indicate the harts are halted. Then it can clear haltreq to 0, or leave it high to catch a hart that resets
while halted.
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B.2.4. Running

First, the debugger should restore any registers that it has overwritten. Then it can let the selected
harts run by setting resumereq. Once allresumeack is set, the debugger knows the selected harts have
resumed. Harts might halt very quickly after resuming (e.g. by hitting a software breakpoint) so the
debugger cannot use allhalted/anyhalted to check whether the hart resumed.

B.2.5. Single Step

Using the hardware single step feature is almost the same as regular running. The debugger just sets in
before letting the hart run. The hart behaves exactly as in the running case, except that interrupts may
be disabled (depending on ) and it only fetches and executes a single instruction before re-entering
Debug Mode.

B.2.6. Accessing Registers

B.2.6.1. Using Abstract Command

Read s0 using abstract command:

Op Address Value Comment

Write command aarsize , transfer, regno = 0x1008 Read s0

Read data0 - Returns value that was in s0

Write mstatus using abstract command:

Op Address Value Comment

Write data0 new value

Write command aarsize , transfer, write, regno =
0x300

Write mstatus

B.2.6.2. Using Program Buffer

Abstract commands are used to exchange data with GPRs. Using this mechanism, other registers can
be accessed by moving their value into/out of GPRs.

Write mstatus using program buffer:

Op Address Value Comment

Write progbuf0 csrw s0, MSTATUS

Write progbuf1 ebreak

Write data0 new value

Write command aarsize , postexec, transfer, write,
regno = 0x1008

Write s0, then execute program buffer

Read f1 using program buffer:
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Op Address Value Comment

Write progbuf0 {fmv.x.s s0, f1}

Write progbuf1 ebreak

Write command postexec Execute program buffer

Write command transfer, regno = 0x1008 read s0

Read data0 - Returns the value that was in f1

B.2.7. Reading Memory

B.2.7.1. Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Read a word from memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess , sbreadonaddr Setup

Write sbaddress
0

address

Read sbdata0 - Value read from memory

Read block of memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess , sbreadonaddr,
sbreadondata, sbautoincrement

Turn on autoread and autoincrement

Write sbaddress
0

address Writing address triggers read and
increment

Read sbdata0 - Value read from memory

Read sbdata0 - Next value read from memory

… … … …

Write sbcs 0 Disable autoread

Read sbdata0 - Get last value read from memory.

B.2.7.2. Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or virtual
(depending on and other system configuration).

Read a word from memory using program buffer:

Op Address Value Comment

Write progbuf0 lw s0, 0(s0)

Write progbuf1 ebreak
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Op Address Value Comment

Write data0 address

Write command transfer, write, postexec, regno =
0x1008

Write s0, then execute program buffer

Write command regno = 0x1008 Read s0

Read data0 - Value read from memory

Read block of memory using program buffer:

Op Address Value Comment

Write progbuf0 lw s1, 0(s0)

Write progbuf1 addi s0, s1, 4

Write progbuf2 ebreak

Write data0 address

Write command transfer, write, postexec, regno =
0x1008

Write s0, then execute program buffer

Write command postexec, regno = 0x1009 Read s1, then execute program buffer

Write abstractau
to

autoexecdata[0] Set autoexecdata[0]

Read data0 - Get value read from memory, then
execute program buffer

Read data0 - Get next value read from memory,
then execute program buffer

… … … …

Write abstractau
to

0 Clear autoexecdata[0]

Read data0 - Get last value read from memory.

B.2.7.3. Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual
implementation may differ.

Read a word from memory using abstract memory access:

Op Address Value Comment

Write data1 address

Write command cmdtype=2, aamsize

Read data0 - Value read from memory

Read block of memory using abstract memory access:
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Op Address Value Comment

Write abstractau
to

1 Re-execute the command when data0
is accessed

Write data1 address

Write command cmdtype=2, aamsize ,
aampostincrement

Read data0 - Read value, and trigger reading of
next address

… … … …

Write abstractau
to

0 Disable auto-exec

Read data0 - Get last value read from memory.

B.2.8. Writing Memory

B.2.8.1. Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Write a word to memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess Configure access size

Write sbaddress
0

address

Write sbdata0 value

Write a block of memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess , sbautoincrement Turn on autoincrement

Write sbaddress
0

address

Write sbdata0 value0

Write sbdata0 value1

… … … …

Write sbdata0 valueN

B.2.8.2. Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or virtual
(depending on and other system configuration).

Write a word to memory using program buffer:
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Op Address Value Comment

Write progbuf0 sw s1, 0(s0)

Write progbuf1 ebreak

Write data0 address

Write command transfer, write, regno = 0x1008 Write s0

Write data0 value

Write command transfer, write, postexec, regno =
0x1009

Write s1, then execute program buffer

Write block of memory using program buffer:

Op Address Value Comment

Write progbuf0 sw s1, 0(s0)

Write progbuf1 addi s0, s1, 4

Write progbuf2 ebreak

Write data0 address

Write command transfer, write, regno = 0x1008 Write s0

Write data0 value0

Write command transfer, write, postexec, regno =
0x1009

Write s1, then execute program buffer

Write abstractau
to

autoexecdata[0] Set autoexecdata[0]

Write data0 value1

… … … …

Write data0 valueN

Write abstractau
to

0 Clear autoexecdata[0]

B.2.8.3. Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual
implementation may differ.

Write a word to memory using abstract memory access:

Op Address Value Comment

Write data1 address

Write data0 value

Write command cmdtype=2, aamsize=2, write=1

Write a block of memory using abstract memory access:
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Op Address Value Comment

Write data1 address

Write data0 value0

Write command cmdtype=2, aamsize , write ,
aampostincrement

Write abstractau
to

1 Re-execute the command when data0
is accessed

Write data0 value1

Write data0 value2

… … … …

Write data0 valueN

Write abstractau
to

0 Disable auto-exec

B.2.9. Triggers

A debugger can use hardware triggers to halt a hart when a certain event occurs. Below are some
examples, but as there is no requirement on the number of features of the triggers implemented by a
hart, these examples might not be applicable to all implementations. When a debugger wants to set a
trigger, it writes the desired configuration, and then reads back to see if that configuration is
supported. All examples assume XLEN=32.

Enter Debug Mode when the instruction at 0x80001234 is executed, to be used as an instruction
breakpoint in ROM:

tdata1 0x6980105
c

type=6, dmode=1, action=1, select=0, match=0, m=1, s=1, u=1, vs=1, vu=1,
execute=1

tdata2 0x8000123
4

address

Enter Debug Mode when performing a load at address 0x80007f80 in M-mode or S-mode or U-mode:

tdata1 0x68001059 type=6, dmode=1, action=1, select=0, match=0, m=1, s=1, u=1, load=1

tdata2 0x80007f80 address

Enter Debug Mode when storing to an address between 0x80007c80 and 0x80007cef (inclusive) in
VS-mode or VU-mode when hgatp.VMID=1:

tdata1 0 0x69801902 type=6, dmode=1, action=1, chain=1, select=0, match=2, vs=1, vu=1,
store=1

tdata2 0 0x80007c80 start address (inclusive)

textra32 0 0x03000000 mhselect=6, mhvalue=0

tdata1 1 0x69801182 type=6, dmode=1, action=1, select=0, match=3, vs=1, vu=1, store=1

tdata2 1 0x80007cf0 end address (exclusive)
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textra32 1 0x03000000 mhselect=6, mhvalue=0

Enter Debug Mode when storing to an address between 0x81230000 and 0x8123ffff (inclusive):

tdata1 0x698010da type=6, dmode=1, action=1, select=0, match=1, m=1, s=1, u=1, vs=1, vu=1, store=1

tdata2 0x81237fff 16 upper bits to match exactly, then 0, then all ones.

Enter Debug Mode when loading from an address between 0x86753090 and 0x8675309f or between
0x96753090 and 0x9675309f (inclusive):

tdata1 0 0x69801a59 type=6, dmode=1, action=1, chain=1, match=4, m=1, s=1, u=1, vs=1, vu=1,
load=1

tdata2 0 0xfff03090 Mask for low half, then match for low half

tdata1 1 0x698012d9 type=6, dmode=1, action=1, match=5, m=1, s=1, u=1, vs=1, vu=1, load=1

tdata2 1 0xefff8675 Mask for high half, then match for high half

B.2.10. Handling Exceptions

Generally the debugger can avoid exceptions by being careful with the programs it writes. Sometimes
they are unavoidable though, e.g. if the user asks to access memory or a CSR that is not implemented.
A typical debugger will not know enough about the hardware platform to know what’s going to
happen, and must attempt the access to determine the outcome.

When an exception occurs while executing the Program Buffer, command becomes set. The debugger
can check this field to see whether a program encountered an exception. If there was an exception, it’s
left to the debugger to know what must have caused it.

B.2.11. Quick Access

There are a variety of instructions to transfer data between GPRs and the data registers. They are
either loads/stores or CSR reads/writes. The specific addresses also vary. This is all specified in
hartinfo. The examples here use the pseudo-op transfer dest, src to represent all these options.

Halt the hart for a minimum amount of time to perform a single memory write:

Op Address Value Comment

Write progbuf0 transfer arg2, s0 Save s0

Write progbuf1 transfer s0, arg0 Read first argument (address)

Write progbuf2 transfer arg0, s1 Save s1

Write progbuf3 transfer s1, arg1 Read second argument (data)

Write progbuf4 sw s1, 0(s0)

Write progbuf5 transfer s1, arg0 Restore s1

Write progbuf6 transfer s0, arg2 Restore s0

Write progbuf7 ebreak

Write data0 address
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Op Address Value Comment

Write data1 data

Write command 0x10000000 Perform quick access

This shows an example of setting the m bit in to enable a hardware breakpoint in M-mode. Similar
quick access instructions could have been used previously to configure the trigger that is being
enabled here:

Op Address Value Comment

Write progbuf0 transfer arg0, s0 Save s0

Write progbuf1 li s0, (1 << 6) Form the mask for m bit

Write progbuf2 csrrs x0, tdata1, s0 Apply the mask to mcontrol

Write progbuf3 transfer s0, arg2 Restore s0

Write progbuf4 ebreak

Write command 0x10000000 Perform quick access

B.3. Native Debugger Implementation
The spec contains a few features to aid in writing a native debugger. This section describes how some
common tasks might be achieved.

B.3.1. Single Step

Single step is straightforward if the OS or a debug stub runs in M-Mode while the program being
debugged runs in a less privileged mode. When a step is required, the OS or debug stub writes count=1,
action=0, m=0 before returning control to the lower user program with an mret instruction.

Stepping code running in the same privilege mode as the debugger is more complicated, depending on
what other debug features are implemented.

If hardware implements mpte and mte, then stepping through non-trap code which doesn’t allow for
nested interrupts is also straightforward.

If hardware automatically prevents action=0 triggers from matching when entering a trap handler as
described in Section 5.4, then a carefully written trap handler can ensure that interrupts are disabled
whenever the icount trigger must not match.

If neither of these features exist, then single step is doable, but tricky to get right. To single step, the
debug stub would execute something like:

    li    t0, count=4, action=0, m=1
    csrw  tdata1, t0    /* Write the trigger. */
    lw    t0, 8(sp)     /* Restore t0, count decrements to 3 */
    lw    sp, 0(sp)     /* Restore sp, count decrements to 2 */
    mret                /* Return to program being debugged. count decrements to 1 */

There is an additional problem with using icount to single step. An instruction may cause an exception
into a more privileged mode where the trigger is not enabled. The exception handler might address the
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cause of the exception, and then restart the instruction. Examples of this include page faults, FPU
instructions when the FPU is not yet enabled, and interrupts. When a user is single stepping through
such code, they will have to step twice to get past the restarted instruction. The first time the exception
handler runs, and the second time the instruction actually executes. That is confusing and usually
undesirable.

To help users out, debuggers should detect when a single step restarted an instruction, and then step
again. This way the users see the expected behavior of stepping over the instruction. Ideally the
debugger would notify the user that an exception handler executed the first time.

The debugger should perform this extra step when the PC doesn’t change during a regular step.


It is safe to perform an extra step when the PC changes, because every RISC-V instruction
either changes the PC or has side effects when repeated, but never both.

To avoid an infinite loop if the exception handler does not address the cause of the exception, the
debugger must execute no more than a single extra step.

B.3. Native Debugger Implementation | Page 111

The RISC-V Debug Specification | © RISC-V



Index
A
aampostincrement, 21
aamsize, 21
aamvirtual, 21
aarpostincrement, 19
aarsize, 19
abits, 94
abstractauto, 37
abstractcs, 35
Access Memory, 20
Access Register, 18
ackhavereset, 31
ackunavail, 31
action, 76, 81, 86, 87, 88, 89
address, 45, 45, 45, 45, 95
allhalted, 29
allhavereset, 28
allnonexistent, 29
allresumeack, 29
allrunning, 29
allunavail, 29
anyhalted, 29
anyhavereset, 28
anynonexistent, 29
anyresumeack, 29
anyrunning, 29
anyunavail, 29
authbusy, 29
authdata, 39
authenticated, 29
autoexecdata, 37
autoexecprogbuf, 37

B
busy, 35
BYPASS, 97

C
cause, 55
cetrig, 53
chain, 76, 82
clrkeepalive, 32
clrresethaltreq, 32
cmderr, 36
cmdtype, 19, 20, 21, 37
command, 36
confstrptr0, 37
confstrptr1, 38

confstrptr2, 38
confstrptr3, 38
confstrptrvalid, 29
control, 37
count, 85
custom, 47
custom0, 47

D
data, 46, 47, 47, 47, 68, 71, 95
data0, 39
dataaccess, 34
dataaddr, 34
datacount, 36
datasize, 34
dcsr, 51
debugver, 52
dmactive, 33
dmcontrol, 30
dmcs2, 39
dmexttrigger, 40
dmi, 95
dmireset, 94
dmistat, 94
dmode, 68
dmstatus, 28
dpc, 56
dscratch0, 57
dscratch1, 57
dtmcs, 93
dtmhardreset, 94

E
ebreakm, 53
ebreaks, 54
ebreaku, 54
ebreakvs, 53
ebreakvu, 53
errinfo, 94
etrigger, 87
execute, 78, 84
extcause, 52

F
field, 7

G
group, 40
grouptype, 40

Index | Page 112

The RISC-V Debug Specification | © RISC-V



H
haltreq, 31
haltsum0, 41
haltsum1, 41
haltsum2, 42
haltsum3, 42
hartinfo, 33
hartreset, 31
hartsel, 30
hartselhi, 32
hartsello, 32
hasel, 32
hasresethaltreq, 29
hawindow, 34
hawindowsel, 34, 34
hcontext, 70, 71
hgselect, 41
hgwrite, 41
hit, 73, 85, 86, 88, 89
hit0, 80

I
icount, 84
IDCODE, 93
idle, 94
impebreak, 28
info, 69
intctl, 89
itrigger, 86

K
keepalive, 30

L
load, 78, 84

M
m, 77, 83, 85, 87, 88
ManufId, 93
maskmax, 72
match, 77, 83
mcontext, 71
mcontrol, 71
mcontrol6, 78
mhselect, 90
mhvalue, 90
mprven, 55
mpte, 70
mscontext, 71
mte, 70

N
ndmreset, 32
ndmresetpending, 28
nextdm, 38
nmi, 87
nmip, 55
nscratch, 33

O
op, 96

P
PartNumber, 93
pending, 85
postexec, 19
priv, 57
progbuf0, 39
progbufsize, 35
prv, 56, 58

Q
Quick Access, 20

R
regno, 20
relaxedpriv, 35
resethaltreq, 30
resume ack bit, 29, 29
resumereq, 31

S
s, 77, 84, 85, 87, 88
sbaccess, 43
sbaccess128, 44
sbaccess16, 44
sbaccess32, 44
sbaccess64, 44
sbaccess8, 44
sbaddress0, 44
sbaddress1, 45
sbaddress2, 45
sbaddress3, 45
sbasize, 44
sbautoincrement, 43
sbbusy, 43
sbbusyerror, 43
sbcs, 42
sbdata0, 46
sbdata1, 46
sbdata2, 47
sbdata3, 47

Index | Page 113

The RISC-V Debug Specification | © RISC-V



sberror, 44
sbreadonaddr, 43
sbreadondata, 43
sbversion, 43
sbytemask, 90, 91
scontext, 70
select, 73, 80, 89
setkeepalive, 32
setresethaltreq, 32
shortname, 7
size, 81
sizehi, 72
sizelo, 75
Smdbltrp, 52, 53
sselect, 90
step, 55
stepie, 54
stickyunavail, 28
stopcount, 54
stoptime, 54
store, 78, 84
svalue, 90

T
target-specific, 21
tcontrol, 69
tdata1, 66
tdata2, 68
tdata3, 68
textra32, 89
textra64, 90
timing, 74
tinfo, 69
tmexttrigger, 88
transfer, 19
tselect, 66
type, 67

U
u, 77, 84, 86, 87, 88
uncertain, 79
uncertainen, 84

V
v, 55, 58
Version, 93
version, 30, 69, 95
vs, 79, 85, 87, 88
vu, 79, 85, 87, 88

W
write, 20, 21

Index | Page 114

The RISC-V Debug Specification | © RISC-V


	The RISC-V Debug Specification
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Terminology
	1.2. Context
	1.2.1. Versions
	1.2.1.1. Bugfixes from 0.13 to 1.0
	1.2.1.2. Incompatible Changes from 0.13 to 1.0
	1.2.1.3. Minor Changes from 0.13 to 1.0
	1.2.1.4. New Features from 0.13 to 1.0
	1.2.1.5. Incompatible Changes During 1.0 Stable
	1.2.1.6. Incompatible Changes Between 1.0.0-rc1 and 1.0.0-rc2


	1.3. About This Document
	1.3.1. Structure
	1.3.2. ISA vs. non-ISA
	1.3.3. Register Definition Format
	1.3.3.1. Long Name (shortname, at 0x123)


	1.4. Background
	1.5. Supported Features

	Chapter 2. System Overview
	Chapter 3. Debug Module (DM) (non-ISA extension)
	3.1. Debug Module Interface (DMI)
	3.2. Reset Control
	3.3. Selecting Harts
	3.3.1. Selecting a Single Hart
	3.3.2. Selecting Multiple Harts

	3.4. Hart DM States
	3.5. Run Control
	3.6. Halt Groups, Resume Groups, and External Triggers
	3.7. Abstract Commands
	3.7.1. Abstract Command Listing
	3.7.1.1. Access Register
	3.7.1.2. Quick Access
	3.7.1.3. Access Memory


	3.8. Program Buffer
	3.9. Overview of Hart Debug States
	3.10. System Bus Access
	3.11. Minimally Intrusive Debugging
	3.12. Security
	3.13. Version Detection
	3.14. Debug Module Registers
	3.14.1. Debug Module Status (dmstatus, at 0x11)
	3.14.2. Debug Module Control (dmcontrol, at 0x10)
	3.14.3. Hart Info (hartinfo, at 0x12)
	3.14.4. Hart Array Window Select (hawindowsel, at 0x14)
	3.14.5. Hart Array Window (hawindow, at 0x15)
	3.14.6. Abstract Control and Status (abstractcs, at 0x16)
	3.14.7. Abstract Command (command, at 0x17)
	3.14.8. Abstract Command Autoexec (abstractauto, at 0x18)
	3.14.9. Configuration Structure Pointer 0 (confstrptr0, at 0x19)
	3.14.10. Configuration Structure Pointer 1 (confstrptr1, at 0x1a)
	3.14.11. Configuration Structure Pointer 2 (confstrptr2, at 0x1b)
	3.14.12. Configuration Structure Pointer 3 (confstrptr3, at 0x1c)
	3.14.13. Next Debug Module (nextdm, at 0x1d)
	3.14.14. Abstract Data 0 (data0, at 0x04)
	3.14.15. Program Buffer 0 (progbuf0, at 0x20)
	3.14.16. Authentication Data (authdata, at 0x30)
	3.14.17. Debug Module Control and Status 2 (dmcs2, at 0x32)
	3.14.18. Halt Summary 0 (haltsum0, at 0x40)
	3.14.19. Halt Summary 1 (haltsum1, at 0x13)
	3.14.20. Halt Summary 2 (haltsum2, at 0x34)
	3.14.21. Halt Summary 3 (haltsum3, at 0x35)
	3.14.22. System Bus Access Control and Status (sbcs, at 0x38)
	3.14.23. System Bus Address 31:0 (sbaddress0, at 0x39)
	3.14.24. System Bus Address 63:32 (sbaddress1, at 0x3a)
	3.14.25. System Bus Address 95:64 (sbaddress2, at 0x3b)
	3.14.26. System Bus Address 127:96 (sbaddress3, at 0x37)
	3.14.27. System Bus Data 31:0 (sbdata0, at 0x3c)
	3.14.28. System Bus Data 63:32 (sbdata1, at 0x3d)
	3.14.29. System Bus Data 95:64 (sbdata2, at 0x3e)
	3.14.30. System Bus Data 127:96 (sbdata3, at 0x3f)
	3.14.31. Custom Features (custom, at 0x1f)
	3.14.32. Custom Features 0 (custom0, at 0x70)


	Chapter 4. Sdext (ISA Extension)
	4.1. Debug Mode
	4.2. Load-Reserved/Store-Conditional Instructions
	4.3. Wait for Interrupt Instruction
	4.4. Wait-on-Reservation-Set Instructions
	4.5. Single Step
	4.5.1. Step Bit In Dcsr
	4.5.2. Icount Trigger

	4.6. Reset
	4.7. Halt
	4.8. Resume
	4.9. Core Debug Registers
	4.9.1. Debug Control and Status (dcsr, at 0x7b0)
	4.9.2. Debug PC (dpc, at 0x7b1)
	4.9.3. Debug Scratch Register 0 (dscratch0, at 0x7b2)
	4.9.4. Debug Scratch Register 1 (dscratch1, at 0x7b3)

	4.10. Virtual Debug Registers
	4.10.1. Privilege Mode (priv, at virtual)


	Chapter 5. Sdtrig (ISA Extension)
	5.1. Enumeration
	5.2. Actions
	5.3. Priority
	5.4. Native Triggers
	5.5. Memory Access Triggers
	5.5.1. A Extension
	5.5.2. Combined Accesses
	5.5.3. Cache Operations
	5.5.4. Address Matches
	5.5.4.1. Invalid Addresses


	5.6. Multiple State Change Instructions
	5.7. Trigger Module Registers
	5.7.1. Trigger Select (tselect, at 0x7a0)
	5.7.2. Trigger Data 1 (tdata1, at 0x7a1)
	5.7.3. Trigger Data 2 (tdata2, at 0x7a2)
	5.7.4. Trigger Data 3 (tdata3, at 0x7a3)
	5.7.5. Trigger Info (tinfo, at 0x7a4)
	5.7.6. Trigger Control (tcontrol, at 0x7a5)
	5.7.7. Hypervisor Context (hcontext, at 0x6a8)
	5.7.8. Supervisor Context (scontext, at 0x5a8)
	5.7.9. Machine Context (mcontext, at 0x7a8)
	5.7.10. Machine Supervisor Context (mscontext, at 0x7aa)
	5.7.11. Match Control (mcontrol, at 0x7a1)
	5.7.12. Match Control Type 6 (mcontrol6, at 0x7a1)
	5.7.13. Instruction Count (icount, at 0x7a1)
	5.7.14. Interrupt Trigger (itrigger, at 0x7a1)
	5.7.15. Exception Trigger (etrigger, at 0x7a1)
	5.7.16. External Trigger (tmexttrigger, at 0x7a1)
	5.7.17. Trigger Extra (RV32) (textra32, at 0x7a3)
	5.7.18. Trigger Extra (RV64) (textra64, at 0x7a3)


	Chapter 6. Debug Transport Module (DTM) (non-ISA extension)
	6.1. JTAG Debug Transport Module
	6.1.1. JTAG Background
	6.1.2. JTAG DTM Registers
	6.1.3. IDCODE (at 0x01)
	6.1.4. DTM Control and Status (dtmcs, at 0x10)
	6.1.5. Debug Module Interface Access (dmi, at 0x11)
	6.1.6. BYPASS (at 0x1f)
	6.1.7. JTAG Connector
	6.1.7.1. Recommended JTAG Connector
	6.1.7.2. Alternate JTAG Connector

	6.1.8. cJTAG


	Appendix A: Hardware Implementations
	A.1. Abstract Command Based
	A.2. Execution Based
	A.3. Debug Module Interface Signals

	Appendix B: Debugger Implementation
	B.1. C Header File
	B.2. External Debugger Implementation
	B.2.1. Debug Module Interface Access
	B.2.2. Checking for Halted Harts
	B.2.3. Halting
	B.2.4. Running
	B.2.5. Single Step
	B.2.6. Accessing Registers
	B.2.6.1. Using Abstract Command
	B.2.6.2. Using Program Buffer

	B.2.7. Reading Memory
	B.2.7.1. Using System Bus Access
	B.2.7.2. Using Program Buffer
	B.2.7.3. Using Abstract Memory Access

	B.2.8. Writing Memory
	B.2.8.1. Using System Bus Access
	B.2.8.2. Using Program Buffer
	B.2.8.3. Using Abstract Memory Access

	B.2.9. Triggers
	B.2.10. Handling Exceptions
	B.2.11. Quick Access

	B.3. Native Debugger Implementation
	B.3.1. Single Step


	Index

