
Arm® Debug Interface
Architecture Specification

ADIv6.0
Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0074E (ID072524)

Arm Debug Interface Architecture Specification
ADIv6.0

Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm Limited (“Arm”). No license, express
or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically
stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether the subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions,
information, scope, and data. This document was produced using reasonable efforts based on information available as of the date
of issue of this document. The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm's view of the scope of its
obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety and that
you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning your
products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible for
any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED “AS IS”. ARM
PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY,
NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Reference by Arm to any third party's products or services within this document is not an express or implied approval or
endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes
to this document at any time and without notice

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of this document shall prevail.

Change History

Date Issue Confidentiality Change

9 March 2017 A Non-Confidential First issue, for ADIv6.

30 April 2018 B Non-Confidential Second issue, for ADIv6.

24 July 2020 C Non-Confidential Third issue, for ADIv6.

25 February 2022 D Non-Confidential Fourth issue, for ADIv6.

24 July, 2024 E Non-Confidential Fifth issue, for ADIv6.
ii Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. Please follow Arm’s trademark usage guidelines at
https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners.

Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-20349

8 March 2024

Confidentiality Status

This document is Non-Confidential. Any use by you is subject to the terms of the agreement between you and Arm or the terms
of the agreement between you and the party authorized by Arm to disclose this document to you.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. iii
ID072524 Non-Confidential

iv Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Contents
Arm Debug Interface Architecture Specification
ADIv6.0

Preface
About this manual ... x
Using this book ... xi
Conventions .. xiii
Additional reading ... xv
Feedback .. xvi

Part A The Arm Debug Interface

Chapter A1 About the Arm Debug Interface
A1.1 ADI versions .. A1-20
A1.2 Purpose of the ADI .. A1-21
A1.3 The debug link ... A1-23
A1.4 The subdivisions of an ADIv6 implementation .. A1-25
A1.5 The Debug Port (DP) .. A1-27
A1.6 Access Ports (APs) ... A1-28
A1.7 Design choices and implementation examples ... A1-32
A1.8 Power Requests .. A1-36

Part B The Debug Port

Chapter B1 About the DP
B1.1 MINDP, Minimal DP extension .. B1-42
B1.2 Sticky flags and DP error responses ... B1-43
B1.3 The transaction counter .. B1-45
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. v
ID072524 Non-Confidential

B1.4 Pushed-compare and pushed-verify operations ... B1-46
B1.5 Power and reset control ... B1-48

Chapter B2 DP Reference Information
B2.1 DP architecture versions ... B2-50
B2.2 DP register descriptions .. B2-53
B2.3 System and debug power control behavior ... B2-82
B2.4 Debug reset control behavior .. B2-87
B2.5 System reset control behavior ... B2-89

Chapter B3 The JTAG Debug Port
B3.1 About the JTAG-DP .. B3-92
B3.2 The scan chain interface ... B3-93
B3.3 IR scan chain and IR instructions .. B3-96
B3.4 DR scan chain and DR instructions .. B3-99

Chapter B4 The Serial Wire Debug Port
B4.1 About the SWD protocol .. B4-114
B4.2 SWD protocol operation .. B4-118
B4.3 SWD interface ... B4-130

Chapter B5 The Serial Wire/JTAG Debug Port
B5.1 About the SWJ-DP .. B5-134
B5.2 Switching between SWD and JTAG .. B5-136
B5.3 Dormant operation .. B5-139
B5.4 Restrictions on switching between operating modes .. B5-146

Part C The Access Port

Chapter C1 About the AP
C1.1 AP requirements ... C1-150
C1.2 Selecting and accessing an AP ... C1-151
C1.3 AP Programmers’ Model Summary ... C1-152
C1.4 AP Register Descriptions .. C1-153

Chapter C2 The Memory Access Port
C2.1 About the MEM-AP ... C2-172
C2.2 MEM-AP functions .. C2-177
C2.3 Implementing a MEM-AP .. C2-192
C2.4 MEM-AP examples of pushed-verify and pushed-compare C2-196
C2.5 MEM-AP programmers’ model .. C2-198
C2.6 MEM-AP register descriptions ... C2-201

Chapter C3 The JTAG Access Port
C3.1 About the JTAG-AP ... C3-244
C3.2 Operation of the JTAG-AP .. C3-249
C3.3 The JTAG Engine Byte Command Protocol .. C3-252
C3.4 JTAG-AP programmers’ model ... C3-259
C3.5 JTAG-AP register descriptions .. C3-261

Part D ROM Tables

Chapter D1 About ROM Tables
D1.1 ROM Tables Overview .. D1-290
D1.2 ROM Table Types ... D1-291
vi Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D1.3 Component and Peripheral ID Registers for ROM Tables D1-292
D1.4 The component address ... D1-293
D1.5 Location of the ROM Table ... D1-294
D1.6 ROM Table hierarchies ... D1-295

Chapter D2 Class 0x1 ROM Tables
D2.1 About Class 0x1 ROM Tables ... D2-300
D2.2 Class 0x1 ROM Table summary ... D2-301
D2.3 Use of power domain IDs .. D2-303
D2.4 Register Descriptions .. D2-305

Chapter D3 Class 0x9 ROM Tables
D3.1 About Class 0x9 ROM Tables ... D3-314
D3.2 Class 0x9 ROM Table summary ... D3-315
D3.3 Use of power domain IDs .. D3-319
D3.4 Reset control ... D3-325
D3.5 Register descriptions ... D3-328

Part E Appendixes

Appendix E1 Standard Memory Access Port Definitions
E1.1 Introduction ... E1-360
E1.2 AMBA AXI3 and AXI4 ... E1-361
E1.3 AMBA AXI4 with ACE-Lite .. E1-363
E1.4 AMBA AXI5 ... E1-366
E1.5 AMBA AHB3 .. E1-370
E1.6 AMBA AHB5 .. E1-373
E1.7 AMBA AHB5 with enhanced HPROT control .. E1-375
E1.8 AMBA APB2 and APB3 ... E1-377
E1.9 AMBA APB4 and APB5 ... E1-378

Appendix E2 Cross-over with the Arm Architecture
E2.1 Introduction ... E2-382
E2.2 Armv6-M, Armv7-M, and Armv8-M architecture profiles E2-383
E2.3 PEs with a physical address up to 32 bits ... E2-384
E2.4 PEs with a physical address greater than 32 bits ... E2-385
E2.5 Summary of the requirements for ADIv6 implementations E2-386

Appendix E3 Revisions

Glossary
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. vii
ID072524 Non-Confidential

viii Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Preface

This preface introduces the Arm Debug Interface Architecture Specification ADIv6.0. It contains the following
sections:

• About this manual on page x.

• Using this book on page xi.

• Conventions on page xiii.

• Additional reading on page xv.

• Feedback on page xvi.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ix
ID072524 Non-Confidential

 Preface
 About this manual
About this manual

This manual describes the Arm Debug Interface Architecture Specification ADIv6.0 (ADIv6).

Intended audience

This specification is written for system designers and engineers who specify, design, or implement
ADIv6-compliant debug interfaces. The audience includes system designers and engineers who specify, design, or
implement a System-on-Chip (SoC) that incorporates an ADIv6-compliant debug interface.

This specification is also intended for engineers who are working with a debug interface that conforms to the ADIv6
specification. This audience includes designers and engineers who:

• Specify, design, or implement hardware debuggers.

• Specify, design, or write debug software.

These engineers have no control over the design decisions that are made in the ADIv6 interface implementation to
which they connect but must be able to identify the ADIv6 interface components that are present, and understand
how they operate.

This specification provides an architectural description of an ADIv6 interface. It does not describe how to
implement the interface.
x Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

 Preface
 Using this book
Using this book

This specification is organized into the following chapters:

Chapter A1 About the Arm Debug Interface

Read this chapter for a high-level view of the Arm Debug Interface (ADI). This chapter defines the
logical subdivisions of an ADI, and summarizes the design choices that are made when
implementing an ADI.

Chapter B1 About the DP

Every ADI includes a single Debug Port (DP). The DP can be one of several types: a JTAG Debug
Port (JTAG-DP), a Serial Wire Debug Port (SW-DP), or a Serial Wire/JTAG Debug Port (SWJ-DP).
Read this chapter for a description of the features that must be implemented on the DP of any ADI.

Chapter B2 DP Reference Information

Read this chapter for detailed reference information that applies to all DP types.

Chapter B3 The JTAG Debug Port

Read this chapter for a description of the JTAG-DP, and in particular, the Debug Test Access Port
State Machine (DBGTAPSM) and the scan chains that access the JTAG-DP.

Chapter B4 The Serial Wire Debug Port

Read this chapter for a description of the SW-DP and the Serial Wire Debug (SWD) protocols, that
are used to access an SW-DP.

Chapter B5 The Serial Wire/JTAG Debug Port

Read this chapter for a description of multiple protocol interoperability as implemented in the
SWJ-DP CoreSight component.

Chapter C1 About the AP

Read this chapter for a description of ADI Access Ports (APs), and details of the features that every
AP must implement.

Chapter C2 The Memory Access Port

Read this chapter for a description of the ADI Memory Access Port (MEM-AP).

Chapter C3 The JTAG Access Port

Read this chapter for a description of the ADI JTAG Access Port (JTAG-AP).

Chapter D1 About ROM Tables

Read this chapter for a general description of Arm debug component ROM Tables. Any ADI can
include a ROM Table, and an ADI with more than one debug component must include at least one
ROM Table.

Chapter D2 Class 0x1 ROM Tables

Read this chapter for detailed information about Class 0x1 ROM Tables. Class 0x1 ROM Tables
have a Component class value of 0x1.

Chapter D3 Class 0x9 ROM Tables

Read this chapter for detailed information about Class 0x9 ROM Tables. Class 0x9 ROM Tables
have a Component class value of 0x9, which identifies them as CoreSight components. A value of
the Component Architecture ID of 0x0AF7 identifies the component as a Class 0x9 ROM Table.

Appendix E1 Standard Memory Access Port Definitions

Read this appendix for information on implementing the Memory Access Port (MEM-AP).
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. xi
ID072524 Non-Confidential

 Preface
 Using this book
Appendix E2 Cross-over with the Arm Architecture

Read this appendix for a description of the required or recommended options for the ADI for Arm
architecture profiles.

Appendix E3 Revisions

Read this appendix for information on the changes between issues of his document.

Glossary

Read the Glossary for definitions of some of the terms that are used in this manual.
xii Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

 Preface
 Conventions
Conventions

The following sections describe conventions that this specification can use:

• Typographic conventions.

• Signals.

• Timing diagrams.

• Numbers on page xiv.

• Pseudocode descriptions on page xiv.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link:

• A URL, for example https://developer.arm.com.

• A cross-reference, that, if it is not on the current page, includes the page number of the
referenced information. For example, Pseudocode descriptions on page xiv.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example AMBA.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Prefix DBG Denotes debug signals.

Timing diagrams

The figure that is named Key to timing diagram conventions on page xiv explains the components that are used in
timing diagrams. Variations, when they occur, have clear labels. Do not assume any timing information that is not
explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that
time. The actual level is unimportant and does not affect normal operation.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. xiii
ID072524 Non-Confidential

 Preface
 Conventions
Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to
the bus change shown in Key to timing diagram conventions. If a timing diagram shows a single-bit signal in this
way, its value does not affect the accompanying description.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and is described in Chapter J1, Armv8 Pseudocode of the Arm®
Architecture Reference Manual, for A-profile architecture.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xiv Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

 Preface
 Additional reading
Additional reading

This section lists relevant publications from Arm and third parties.

See Arm Developer https://developer.arm.com, for access to Arm documentation.

Arm publications

See the following documents for other information that is relevant to this specification:

• Arm® Architecture Reference Manual, for A-profile architecture (ARM DDI 0487).

• Arm® Architecture Reference Manual, Armv7-A and Armv7-R edition (ARM DDI 0406).

• Arm® Realm Management Extension (RME) System Architecture (ARM DEN 0129).

• Arm® Architecture Reference Manual Supplement, the Realm Management Extension (RME), for Armv9-A
(ARM DDI 0615).

• Arm® v8-M Architecture Reference Manual (ARM DDI 0553).

• Arm® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

• ARM® Debug and Trace Configuration and Usage Models (ARM DEN 0034A).

• Arm® CoreSight™ Architecture Specification (ARM IHI 0029).

• Arm® CoreSight™ SoC-400 Technical Reference Manual (ARM 100536).

• AMBA® AXI™ and ACE™ Protocol Specification (ARM IHI 0022).

• Arm® AMBA® 5 AHB™ Protocol Specification, AHB5™, AHB-Lite™ (ARM IHI 0033b).

• AMBA® APB™ Protocol Specification (ARM IHI 0024).

• Arm1136JF-S™ and Arm1136J-S™ Technical Reference Manual (ARM DDI 0211).

• Advanced Communications Channel™ Architecture Specification (ARM IHI 0076).

Other publications

The following books are referred to in this specification, or provide more information:

• IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE 1149.1-2001).

• JEDEC Standard Manufacturer’s Identification Code (JEDEC JEP106).
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. xv
ID072524 Non-Confidential

 Preface
 Feedback
Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this specification, send an e-mail to errata@arm.com. Give:

• The title.

• The number, ARM IHI 0074E.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.

Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find
offensive terms in this document, please contact terms@arm.com.
xvi Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Part A
The Arm Debug Interface

Chapter A1
About the Arm Debug Interface

This chapter introduces the Arm Debug Interface (ADI) architecture and summarizes the design decisions that are
required for an ADI implementation. It contains the following sections:

• ADI versions on page A1-20.

• Purpose of the ADI on page A1-21.

• The debug link on page A1-23.

• The subdivisions of an ADIv6 implementation on page A1-25.

• The Debug Port (DP) on page A1-27.

• Access Ports (APs) on page A1-28.

• Design choices and implementation examples on page A1-32.

• Power Requests on page A1-36.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-19
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.1 ADI versions
A1.1 ADI versions

The Arm Debug Interface version 6 (ADIv6) is the sixth major version of the Arm Debug Interface (ADI).

Note

The term ADIv6 refers to any release of the sixth major revision of ADI. Because version 6.0 is the only released
revision to date, in this document ADIv6 and ADIv6.0 refer to the same revision.

Debug interface versions 1 and 2

Implemented on the ARM7TDMI® and ARM9® families of processor cores.

Debug interface version 3

Introduced for the ARM10™ processor family.

ADIv4 The first version of the ADI to be linked with an Arm architecture version, rather than an
implementation of an Arm processor core. Arm recommends that ADIv4 is used with
implementations of the Armv6 architecture.

ADIv5 Removed the link between the ADI and Arm processor cores, and formalized version numbering of
Debug Ports.

ADIv6.0 provides a layering system that allows memory-mapped access to all parts of a system from multiple
different agents, including off-chip debuggers and on-chip software. Access to system resources that are not
memory-mapped must be provided by abstraction layers which are memory-mapped. To control JTAG devices, for
example, a memory-mapped component that is capable of interfacing with the JTAG device must be provided.

ADIv6 comprises the following layers:

• A JTAG or SWD physical layer. For more detail on the JTAG physical layer, see IEEE Standard Test Access
Port and Boundary Scan Architecture.

• A JTAG or SWD protocol layer, for managing the JTAG and SWD state machines.

• A JTAG or SWD Data Link layer, for performing accesses to DP registers and AP registers.

• The AP layer, for access to one or more subsystems in an SoC.

ADIv6 permits debug links other than JTAG or SWD to access the AP layer, so that multiple different links can be
used to access debug functionality. Such debug links can be other functional interfaces to the SoC, or on-chip debug
software.

To accommodate these enhancements, ADIv6 includes the following version changes to the DP and AP:

• The new DP architecture version is DPv3. ADIv6 only permits use of DPv3.

Note
DPv3 is not fully backwards compatible with earlier DP versions.

• The new AP architecture version is APv2. ADIv6 only permits use of APv2 APs.

Note

The ADIv5 AP is referred to as APv1, to provide a distinction from the ADIv6 APv2.
A1-20 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

A1 About the Arm Debug Interface
A1.2 Purpose of the ADI
A1.2 Purpose of the ADI

The ADI provides access to debug functionality that is provided by debug components in an embedded SoC.

This section summarizes various types of debug functionality that can be found in SoCs. It contains the following
subsections:

• Embedded core debug functionality.

• System debug functionality.

• Compatibility between CoreSight and Arm debug interfaces on page A1-22.

For information about compatibility with the CoreSight™ architecture, see Compatibility between CoreSight and
Arm debug interfaces on page A1-22.

A1.2.1 Embedded core debug functionality

An embedded microprocessor can provide the following debug features to enable the debugging of applications:

Processor state modification

Facilities that enable an external host to modify the state of the processor, as defined by the contents
of the internal registers and the memory system.

Processor state assessment

Facilities that enable an external host to assess the state of the processor by providing access to the
contents of the internal registers and the memory system.

Programming debug events

Facilities that allow an external host to program debug events. An external host must be able to
configure the debug logic so that when a special event occurs, such as the program flow reaching a
certain instruction in the code, the core enters a special execution mode in which its state can be
examined and modified by an external system. In this chapter, this special execution mode is
referred to as Debug state.

Enter or exit Debug state

Facilities to allow an external system to force the processor to enter or exit Debug state, and
determine when the core enters or leaves Debug state.

Trace features

Trace the program flow that is associated with programmable events.

Examples of technologies that provide these facilities are:

• The Armv8 Debug Architecture. For more information, see the Arm® Architecture Reference Manual, for
A-profile architecture.

• The ETM. For more information, see the ETM Architecture Specification.

ADIv6 implementations can also access legacy components that implement an IEEE 1149.1 JTAG interface, which
enables accessing debug resources in processors that implement earlier versions of the ADI.

A1.2.2 System debug functionality

The scope of debug information extends beyond the boundaries of an embedded microprocessor core, and includes
the following elements:

• Components outside the cores that are embedded in the SoC.

• The interconnection fabric of the system.

To enable debugging these elements, a SoC can provide the following system-level debug features:

External host access
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-21
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.2 Purpose of the ADI
Facilities that enable an external host to access the following debug information:

• System state parameters that might not be visible to the embedded microprocessor core.

• Trace information about the interconnection fabric, for example accesses by the
microprocessor core, or accesses by other devices such as Direct Memory Access (DMA)
engines.

Access to diagnostic information

A mechanism for the efficient collection and streaming of diagnostic information, for example
program trace.

Diagnostic messaging

Mechanisms for low-intrusion diagnostic messaging between software and debugger.

Cross-triggering

Cross-triggering mechanisms that enable debug components to signal to each other.

Examples of technologies that provide these facilities are:

• A debug port that is compliant with the ADIv6 architecture.

• The CoreSight debug architecture. For more information, see the Arm® CoreSight™ Architecture
Specification.

• CoreSight components. For more information, see the CoreSight SoC Technical Reference Manual.

A1.2.3 Compatibility between CoreSight and Arm debug interfaces

ADIv6 is compatible with the Arm CoreSight architecture:

• ADIv6 can be used to access and control CoreSight-compatible components.

• The ADIv6 specification does not require debug components to comply with the CoreSight architecture.
A1-22 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

A1 About the Arm Debug Interface
A1.3 The debug link
A1.3 The debug link

A basic principle of this specification is that the debug link provides a means to perform memory-mapped
transactions to the AP layer. Examples of debug links include:

• JTAG/SWD, using an ADIv6 DP.

• Normal functional links, for example PCIe, USB, and IP sockets.

• On-chip software.

As a result of applying this principle, it is sufficient for the debug agent that uses the AP layer to understand how to
use memory-mapped transactions.

To determine the identity and topology of the system, the debug agent needs a starting address to interrogate the
system. A single address that can be up to 64 bits wide, provides the base address of the first component on the list
of components to be identified. The first component is one of the following:

• A single CoreSight component that is not a ROM Table, and is the only component that is accessible via this
link.

• An AP. An AP provides a bridge into another system. A MEM-AP provides a window into a memory system.
A MEM-AP provides the base address of the first component on the list of components to be identified in the
memory system that is accessed by the MEM-AP, and this base address must be used to continue
identification.

• A ROM Table. This ROM Table contains addresses of one or more further components on the list of
components to be identified.

ROM Tables are permitted to point to other ROM Tables with no limit on the depth of nesting.

MEM-APs are permitted to be accessible from other MEM-APs, although Arm strongly recommends that nesting
of MEM-APs in this way is not implemented.

An example system with two memory systems is shown in Figure A1-2 on page A1-25.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-23
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.3 The debug link
Figure A1-1 Example ADIv6 system

On-chip debug software does not always have to perform accesses via the top-most layer, and can enter at lower
layers. Referring to Figure A1-1, for a self-hosted debug software in a CPU in memory system 2 to access
components in memory system 2, it must only use components within the memory system of the host processor. It
does not need to go via the MEM-AP for that memory system, and can directly access a layer below the MEM-AP.

As shown in the example in Figure A1-1, a CoreSight component might be at the top level, outside all memory
systems, for example a Trace Port Interface Unit (TPIU) component that is shared across all memory systems and
is only accessed by external debuggers.

pointers

pointer

pointer

pointers

pointers

pointers

Memory system 1

ROMdebug
link(s)

MEM-AP CoreSight
Component

Memory system 2

MEM-AP ROM

CoreSight
Components

CoreSight
Components

ROM

CoreSight
Component

CoreSight
Components

ROM
A1-24 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

A1 About the Arm Debug Interface
A1.4 The subdivisions of an ADIv6 implementation
A1.4 The subdivisions of an ADIv6 implementation

An implementation of the ADI provides a debugger with a standard interface to access debug resources in systems
that use resource-specific methods to expose their debug information. An implementation of the ADI is sometimes
called a Debug Access Port (DAP).

A1.4.1 Connections to the ADI

The logical block diagram in Figure A1-2 shows how an ADI implementation is connected between a debugger and
the system to be debugged.

Figure A1-2 Block diagram of an ADIv6 implementation

To access a debug resource, the debugger passes the appropriate resource address information to the ADI, which
executes the request by selecting the appropriate resource and then accessing resource-specific transport methods
that are presented by the system to be debugged. An implementation of the ADI consists of the following elements:

Access Port (AP)

An AP uses a resource-specific transport mechanism to access debug information in the system to
be debugged, and passes the information to the DP using the AP Access mechanism that is specified
in this document. Examples of debug resources are:

• The debug registers of the core processor.

• ETM or trace port debug registers.

• A ROM Table, see Chapter D1 About ROM Tables.

• A memory system.

• A legacy JTAG device.

A debugger uses AP accesses to exchange information held in the AP registers, as described in
Access Ports (APs) on page A1-28

This specification is for APv2. ADIv6 only permits use of APv2 APs.

Debug Port (DP)

The DP provides a debugger with a common interface to access the information that is held in the
APs. The DP includes the following elements:

• A physical connection to the debugger. ADIv6 supports the following physical connection
types:

— JTAG-DP.

— SW-DP.

— SWJ-DP.

For details about the supported physical connections, see Chapter B1 About the DP.

resource

resource-
specific

transport

system to be
debugged

DP APdata

AP Access
physical

connection
select

debugger

resourceAP
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-25
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.4 The subdivisions of an ADIv6 implementation
• DP registers that hold information required to support the transport mechanism that is
implemented by the DP, as described in Accessing the DP and AP registers. A debugger uses
the DPACC scan chain to exchange information held in the DP registers.

For detailed information about the DP registers, see DP register descriptions on page B2-53.

This specification is for DPv3. ADIv6 only permits use of DPv3 DPs.

Resource-specific transport

The connection between the DP and the APs, which performs the following tasks:

• Select the appropriate debug resource, which is based on the address information that was
provided by the debugger.

• Transport the data between the APs and the DP.

A1.4.2 Accessing the DP and AP registers

The diagram in Figure A1-2 on page A1-25 shows how a debugger logically accesses the DP and AP registers.

• Although the DP is involved in responding to APACC requests, this involvement is transparent to the
debugger at the level of the APACC.

• The debugger can use the DPACC method to access the DP registers, and achieve one of the following:

— Set the parameters for an imminent APACC. For example, the selection of a particular AP is done by
setting the DP register SELECT on page B2-76.

— Read status information for a previous APACC. For example, the status of the sticky flags resulting
from previous resource accesses is available from the DP register CTRL/STAT.

For details about the communication between the debugger and the DP, see The Debug Port (DP) on page A1-27.

Note

Although this specification defines the ADIv6 in terms of the elements that are shown in Figure A1-2 on
page A1-25, it is not mandatory to structure implementations in this way. The elements that are shown in the figure,
however, provide a convenient representation for describing the programmers’ model, which is the objective of this
specification.
A1-26 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

A1 About the Arm Debug Interface
A1.5 The Debug Port (DP)
A1.5 The Debug Port (DP)

An ADI implementation includes a single DP that provides the following features:

• An external physical connection to the interface. The signals that make up the physical connection depends
on the DP type.

• A method to obtain the identification code of the DP.

• DP and AP access methods, which depend on the DP type.

• Optionally, a method to abort a register access that appears to have failed.

• A method to determine the address size that is used by the ADI.

• A pointer that informs the debugger where to start searching for components, including ROM Tables and
APs.

The ADIv6 specification supports the following DP types:

The JTAG Debug Port (JTAG-DP)

The JTAG-DP is accessed by IEEE 1149.1-compliant DBGTAP scan chains to read and write
register information.

• For more information about DBGTAP scan chains, see Chapter B3 The JTAG Debug Port.

• IEEE Standard 1149.1 Test Access Port and Boundary Scan Architecture contains detailed
information about the requirements for JTAG scan chains.

This specification is for JTAG-DP Protocol version 1. ADIv6 only permits use of JTAG-DP
Protocol version 1. For details, see Chapter B3 The JTAG Debug Port.

The Serial Wire Debug Port (SW-DP)

The SW-DP is a two-pin serial interface that uses a packet-based protocol to read or write registers.
The protocol requires the following steps for communication between the host, which is the
debugger, and the target, which is the ADI:

1. A host-to-target packet request, which includes whether the required access is to a DP register
(DPACC) or to an AP register (APACC), and a two-bit register address.

2. A target-to-host acknowledge response.

3. A data transfer phase, if necessary. This phase can be target-to-host or host-to-target,
depending on the request that is made in the first phase.

For details about the SW-DP protocol, see Chapter B4 The Serial Wire Debug Port.

The Serial Wire/JTAG Debug Port (SWJ-DP)

The SWJ-DP interface combines the SWD and JTAG Data Link protocols using the following
mechanism:

• The pins that carry the signals are shared between the two options.

• The debugger can select which of the protocols it wants to use.

For details about how to implement the SWJ-DP, see Chapter B5 The Serial Wire/JTAG Debug Port.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-27
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.6 Access Ports (APs)
A1.6 Access Ports (APs)

An AP uses a resource-specific transport mechanism to access debug information in the system to be debugged.The
information is passed to the DP from the AP to be accessed by a debugger using a standardized protocol.

The implementation of an AP depends on the resources it accesses. This specification includes programmers’
models for following two types of resources:

• Memory-mapped resources, such as debug peripherals, for which ADIv6 defines a MEM-AP programmers’
model. For a complete description of the MEM-AP programmers’ model, see Guide to the detailed
description of a MEM-AP on page A1-30.

• Legacy IEEE 1149.1 JTAG devices, for which ADIv6 defines a JTAG-AP and associated programmers’
model. For a complete description of the JTAG-AP programmers’ model, see Guide to the detailed
description of a JTAG-AP on page A1-31.

Note

The following applies to APs mentioned in this specification:

• Exact requirements are not specified for the transport between the AP and the resource. In particular, it does
not require a MEM-AP to use a bus to connect to the system being debugged. For example, ADIv6 might be
directly integrated into the resource. In logical terms, however, a MEM-AP always accesses a
memory-mapped resource in the system being debugged, which is why this specification describes MEM-AP
accesses to the system being debugged as memory accesses.

• In the future, more Arm APs might become available.

• An ADI can include APs that are specified by companies other than Arm.

All APs must follow a base standard for identification, and debuggers must be able to recognize and ignore Access
Ports that they do not support. APs that comply with APv2, required by ADIv6, are Class 0x9 CoreSight
components, and implement the CoreSight and APv2 programmers’ models. For more information, see Chapter C1
About the AP.

As described in The subdivisions of an ADIv6 implementation on page A1-25:

• The simplest ADI has only one AP. This AP can be either a MEM-AP or a JTAG-AP.

• ADIs can have multiple APs. For example:

— A mixture of MEM-APs and JTAG-APs.

— All MEM-APs.

— All JTAG-APs.

• Debuggers must be able to recognize and ignore unsupported APs.

For more information, see Chapter C1 About the AP.

A1.6.1 Using the Debug Port to access Access Ports

Figure A1-3 on page A1-30 shows the different levels between the physical connection to the debugger and the
debug resources of the system being debugged. These levels are designed to enable efficient access to the system
being debugged, and several levels provide registers within an implementation of the ADI. This section describes
how these register accesses are implemented.

A DP supports two types of accesses: DP accesses and AP accesses. Because debuggers usually have serial
interfaces, the methods of making these accesses are kept as short as possible, and all accesses are 32-bits.

The description that is given here is of scan chain access to the registers, from a debugger that is connected to a
JTAG-DP. However, the process is similar when the access is from a SWD interface connection to an SW-DP.
Differences when accessing the registers from a SWD interface connection are described in Chapter B4 The Serial
Wire Debug Port.

Every AP or DP access transaction from the debugger includes two address bits, A[3:2]:

• For a DP register access, the address bits A[3:2] and SELECT.DPBANKSEL determine which register is
accessed.
A1-28 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

A1 About the Arm Debug Interface
A1.6 Access Ports (APs)
• For an AP register access, SELECT.ADDR and SELECT1.ADDR are combined to form the 60-bit address
of a bank of four AP registers in the 64-bit AP address space. Address bits A[3:2] are used to select one of
the four registers in the bank, as shown in Figure A1-3 on page A1-30.

Bits[1:0] of all AP and DP register addresses are 0b00.

For example, to access register 3 in bank 1 in the AP that is located at address 0x0000000000000000, the debugger
must:

• Use two DP register writes to select bank 1 in the AP:

— Write 0x00000000 to SELECT1.ADDR.

— Write 0x0000001 to SELECT.ADDR.

• To read from register 3 in the selected bank, use an AP register access with A[3:2] = 0b11.

For every AP access, the DP combines A[3:2] with SELECT1.ADDR and SELECT.ADDR to generate the AP
register address. The debugger can access any of the four registers from 0x10 to 0x1C without changing SELECT.

This access model is shown in Figure A1-3 on page A1-30. This figure shows how the contents of the SELECT1 on
page B2-76 and SELECT on page B2-76 registers are combined with the A[3:2] bits of the APACC scan-chain to
form the address of a register in an AP. Other parts of the JTAG-DP are also shown. These parts are explained in
greater detail in later sections:

• Figure C2-1 on page C2-173 for a MEM-AP implementation.

• Figure C3-1 on page C3-244 for a JTAG-AP implementation.

These figures give more detail of the connections to the debug or system resources.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-29
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.6 Access Ports (APs)
Figure A1-3 Structure of an ADIv6 implementation, showing DPv3 JTAG-DP accesses to a generic AP

A1.6.2 Guide to the detailed description of a MEM-AP

The operation and use of a MEM-AP must be understood within the context of interactions with all of the following
components:

• The MEM-AP itself.

• The MEM-AP registers.

• The standard debug components registers that you access through the MEM-AP.

The MEM-AP is described in the following chapters of this specification:

• Chapter C1 About the AP.

• Chapter C2 The Memory Access Port.

APjAPi

Data[31:0] A[3:2]

DPACC

Note: Register field widths are not drawn to scale.

APACC

D
B

G
TD

I
D

P
R

eg
is

te
rs

 (I
R

=D
PA

C
C

)

C
on

tro
l/S

ta
tu

s
(C

TR
L/

ST
AT

)

R
es

er
ve

d

AP
 A

dd
re

ss
 (S

EL
EC

T1
)

R
ea

d
Bu

ffe
r (

R
D

BU
FF

)

DBGTAP
scan chains

D
eb

ug
 P

or
t

AP
 A

cc
es

s
Ac

ce
ss

 P
or

ts

DP Access

AP
AC

C

Ac
ce

ss
 R

es
ul

t a
nd

 S
ta

tu
s

D
PA

C
C

AP Access

DP

AP

debug
resources

ABORT

IDCODE

A[3:2] selects a
register within a bank of 4

debug
resources

AP Access

RnW

ABORT register[31:0] A[3:2] RnW

IDCODE[31:0]

Data[31:0] A[3:2] RnW

D
B

G
TD

O

D
B

G
TM

S

TC
K

D
B

G
TR

ST
n

RnW selects between reading and writing

A[3:2] RnWData[31:0]

BYPASS

Debug TAP
State Machine
(DBGTAPSM)

Pushed
compare

logic

Transaction
counterAP

 A
dd

re
ss

 (S
EL

EC
T)

AP0

AP0 Register 1
AP0 Register 2

AP0 Register n+1
AP0 Register n+2

...
...

AP0 Register 0

AP0 Register n

AP0 Register 3

AP0 Register n+3

decode

ADDR[63:4]
A[63:4] selects a

register bank of 4 registers

A[3:2] and SELECT.DPBANKSEL
select the DP register
A1-30 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

A1 About the Arm Debug Interface
A1.6 Access Ports (APs)
The MEM-AP provides access to zero, one, or more debug components. Any debug component that complies with
the Arm Generic Identification Registers specification implements a set of Component Identification Registers.
These registers are described in Arm® CoreSight™ Architecture Specification.

If the MEM-AP connects to more than one debug component, the system that is accessed by the MEM-AP must
also include at least one ROM Table. ROM Tables are accessed through a MEM-AP, and are described in
Chapter D1 About ROM Tables.

Note

As shown in Design choices and implementation examples on page A1-32, a system with only one functional debug
component might also implement a ROM Table.

MEM-APs that share resources could suffer from interdependencies. A twin MEM-AP solution, which allows
external debuggers and on-chip software to reliably access MEM-APs that share hardware, is specified in Twin
MEM-APs on page C2-189.

A1.6.3 Guide to the detailed description of a JTAG-AP

To understand the operation and use of a JTAG-AP, you must understand:

• The JTAG-AP itself.

• The JTAG-AP registers.

The JTAG-AP is described in the following chapters of this specification:

• Chapter C1 About the AP.

• Chapter C3 The JTAG Access Port.

The JTAG-AP provides a standard JTAG connection to one or more legacy components. The connection between
the JTAG-AP and the components is described by the IEEE 1149.1-1990 IEEE Standard Test Access Port and
Boundary Scan Architecture. Details on how to use of this connection are outside the scope of this specification.

A1.6.4 Using the AP to access debug resources

Accessing the AP gives access to the system being debugged, which is shown as access to Debug resources in
Figure A1-3 on page A1-30.

In summary:

• In a MEM-AP, the debug resources are logically memory-mapped. Chapter C2 The Memory Access Port
section MEM-AP register accesses and memory accesses on page C2-175 describes the method for accessing
these resources. The connection between the MEM-AP and a debug resource, however, is outside the scope
of this specification.

• In a JTAG-AP, the debug resources are connected through a standard JTAG serial connection, as defined in
IEEE 1149.1-1990 IEEE Standard Test Access Port and Boundary Scan Architecture. For more information
about accessing the resources, see Chapter C3 The JTAG Access Port.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-31
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.7 Design choices and implementation examples
A1.7 Design choices and implementation examples

Figure A1-2 on page A1-25 introduces the components that comprise an ADI.

Before implementing an ADI, certain design choices must be made, as described in this section about following
functional blocks of the interface:

• Choices for the DP.

• Choices for the APs.

Note

This specification is written for engineers implementing an ADI, and for engineers using an ADI. The design
choices outlined in this specification for a debug interface have an implicit purpose. If the reasoning behind the
design choices are not explicit, the implementer of the debug interface must be contacted for further information.

A1.7.1 Choices for the DP

The DP determines which type of physical connection the ADI presents to the debugger. Each implementation of
the ADI provides a single DP that provides the physical connection for the design. You can choose from the
following DP types:

• JTAG-DP.

• SW-DP.

• SWJ-DP.

Note

The following applies to DPs mentioned in this document:

• In an illustration of an ADI, a component that is labeled DP can represent any of the available options.

• Arm might define more DP types in the future.

A1.7.2 Choices for the APs

A simple ADI uses a single AP to connect to a single debug component, for example:

• A MEM-AP that connects to a single microprocessor core, as shown in Figure A1-4.

• A JTAG-AP that connects to a single legacy IEEE 1149.1 device, as shown in Figure A1-5 on page A1-33.

Figure A1-4 Simple ADI MEM-AP Implementation

processor
debug

register file

memory access

system under debug

DP MEM-APdata

AP Access
physical

connection
select

debugger
A1-32 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

A1 About the Arm Debug Interface
A1.7 Design choices and implementation examples
Figure A1-5 Simple ADI JTAG-AP Implementation

A system with only a single debug component often implements a ROM table, as explained in ROM Tables on
page C2-172 and shown in Figure A1-6.

Figure A1-6 Simple example of an ADI implementation, with ROM Table

Because a single ADI can include multiple APs, design choices for APs must be made at two levels:

• Choosing the number of APs in the ADI, and the type of each AP. These decisions are outlined in Top-level
AP planning choices.

• The choices that have to be made for each implemented AP, as outlined in the following sections:

— Choices for JTAG-APs on page A1-35.

— Choices for MEM-APs on page A1-35.

Top-level AP planning choices

In a more complex system, there can be multiple APs. Each AP can be connected to multiple components, or
multiple address spaces. An AP can be implemented as one of the following three types:

• As a MEM-AP with a memory-mapped debug bus connection. The debug bus connects directly to one or
more debug register files.

• As a MEM-AP with a memory-mapped system bus connection. The MEM-AP connection to the system bus
provides access to one or more debug register files.

• As a JTAG-AP. A JTAG-AP connects directly to one or more JTAG devices, and enables connection to legacy
hardware components.

Note
The connection between legacy hardware components and a JTAG-AP is defined by the JTAG standard. For
more information, see Chapter C3 The JTAG Access Port.

Depending on the debug components of the system to which the ADI will connect, the amount of various types of
APs must be decided beforehand.

legacy
IEEE 1149.1

device

JTAG connection

system under debug

DP JTAG-APAP Access
physical

connectiondebugger

processor
debug register

file

debug bus access

system under debug

DP MEM-APAP Access
physical

connectiondebugger

ROM table
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-33
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.7 Design choices and implementation examples
Figure A1-7 shows a more complex ADI and illustrates the different AP types.

Figure A1-7 Complex Arm Debug Interface that uses several AP types

The ADIv6 architecture specification supports the following features:

• An implementation of the ADI is permitted to contain multiple APs.

• A single MEM-AP is permitted to access multiple register files.

• An AP is permitted to access a mixture of system memory and debug register files.

When implementing these features, however, you must observe the following conditions:

• Every AP must follow the basic standard for identification that is described this specification.

• Debuggers must have a way to ignore APs that they do not recognize.

In illustrations such as Figure A1-3 on page A1-30, the DP can be of any DP type that is defined by ADIv6.

processor
debug register

file

debug bus access

system under debug

DP MEM-APAP Access
physical

connectiondebugger

ROM table

MEM-AP

JTAG-AP

JTAG device

JTAG device

ETM debug
register file

JTAG connections

processor
debug register

file

ROM table

ETM debug
register file

system
memory
A1-34 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

A1 About the Arm Debug Interface
A1.7 Design choices and implementation examples
Choices for MEM-APs

The following design decisions must be made for a MEM-AP:

Decisions that depend on the requirements of those debug components

The main decisions to be made for a MEM-AP concern the connection between the MEM-AP and
the memory-mapped debug components that are connected to it. These decisions include:

• Whether a bus is required for this connection.

• The width of the bus, if implemented.

• The memory map of the MEM-AP address space.

Inclusion of a ROM Table

If a MEM-AP connects to more than one debug component, the system must include one or more
ROM Tables to provide information about the debug system. A system that has only one other
component does not require a ROM Table, but a system designer might choose to include one
anyway. For more information, see ROM Tables on page C2-172.

The inclusion of IMPLEMENTATION DEFINED MEM-AP features

• Certain features must be included if the connection is less than 32-bits wide.

• The debug components can place limitations on the connection, for example a component
might require 32-bit access.

For more information about conditional MEM-AP features, see:

• MEM-AP functions on page C2-177.

• MEM-AP implementation requirements on page C2-193.

For detailed information about implementing a MEM-AP, see Chapter C2 The Memory Access Port.

Choices for JTAG-APs

The following design decisions must be made for a JTAG-AP:

The number of JTAG scan chains that are connected to the JTAG-AP

A single JTAG-AP can connect to up to eight JTAG scan chains. These scan chains can be split
across multiple devices or components within the system being debugged.

The number of TAPs in each scan chain

A single JTAG scan chain can contain multiple Test Access Ports (TAPs). However, Arm
recommends that each scan chain connected to a JTAG-AP contains only one TAP.

For more information, see Chapter C3 The JTAG Access Port.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-35
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.8 Power Requests
A1.8 Power Requests

CDBGPWRUPREQ and CSYSPWRUPREQ, which are described in Power control requirements and operation
on page B2-84, are pieces of DP functionality that are not directly accessible to functional networks, and therefore
the Granular Power Requester (GPR) is the primary power request functionality. The GPR functionality is
incorporated in standalone components and optionally in ROM Tables.

The existing standalone GPR programmers model is deprecated in favor of integrating the GPR functionality into
the ROM Table. The ROM Table programmers model including the GPR functionality is described in Power
domain entries on page D3-319.

The components in each power domain are identified in the ROM Table that points to those components, providing
the ability for a debugger to detect the power domain of debug components, and request power for only the domains
that require power at a certain time. The GPR supports up to 32 debug power domains.

To support requesting power to other parts of the system, the GPR functionality is extended to support power
requests for up to 32 further power domains, which are not defined in a ROM Table and are IMPLEMENTATION
DEFINED. These power domains are referred to as system power domains. System power domains might contain
components that must be accessible to a debugger, even though they do not have any debug functionality that is
described in a ROM Table. Examples include system interconnect configuration components.

To enable a debugger that is connected via a functional network to successfully debug the system, the first GPR
must be accessible at the entry point into the system to ensure that the debugger can request power to the rest of the
system. Therefore, the first ROM Table, and the associated GPR, must always be accessible when the debug link is
powered and operational. This GPR must be one of the following:

• A GPR that is incorporated into the ROM Table.

• A separate GPR which is always accessible when the ROM is accessible.

An example of a system with a GPR that is incorporated into the ROM Table is shown in Figure A1-8 on
page A1-37.
A1-36 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

A1 About the Arm Debug Interface
A1.8 Power Requests
Figure A1-8 Example power domains with a top-level power domain at the first level

The power control registers in the ROM Table can be used to issue power requests:

• The debug power control registers, DBGPCR<n>, can be used to request power for up to 32 debug power
domains, as described in Debug power requests on page D3-320.

• The system power control registers, SYSPCR<n>, can be used to request power for up to 32 system power
domains, as described in System power requests on page D3-323.

For detailed descriptions of the ROM Table registers, see Register descriptions on page D3-328.

CoreSight
Component

pointers

pointer

pointer pointers

Power domain 1

ROM with GPRdebug
link(s)

AP CoreSight
Component

Power domain 2

AP ROM

CoreSight
Components

memory
mapped
accesses Top-level power domain

This power domain is powered
whenever the debug link is

powered

The GPR controls
power to power
domains 1 and 2
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. A1-37
ID072524 Non-Confidential

A1 About the Arm Debug Interface
A1.8 Power Requests
A1-38 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Part B
The Debug Port

Chapter B1
About the DP

This part describes the features that are implemented by the DP.

This specification is for DP architecture version DPv3. ADIv6 only permits use of DPv3.

Note

DPv3 is not fully backwards compatible with earlier DP versions. For a description of an earlier version of the DP
architecture, see the relevant version of the ADI architecture specification.

A DP can be implemented as a JTAG-DP, a SW-DP, or a combined SWJ-DP.

Requirements that apply to all DP types are described in the following sections in this chapter:

• MINDP, Minimal DP extension on page B1-42.

• Sticky flags and DP error responses on page B1-43.

• The transaction counter on page B1-45.

• Pushed-compare and pushed-verify operations on page B1-46.

• Power and reset control on page B1-48.

Reference information for all DP types is described in the following chapter:

• Chapter B2 DP Reference Information.

Specific information for each of the DP types is described in the following chapters:

• Chapter B3 The JTAG Debug Port.

• Chapter B4 The Serial Wire Debug Port.

• Chapter B5 The Serial Wire/JTAG Debug Port.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B1-41
ID072524 Non-Confidential

B1 About the DP
B1.1 MINDP, Minimal DP extension
B1.1 MINDP, Minimal DP extension

The Minimal Debug Port (MINDP) programmers’ model is a simplified version of the DP that is intended for low
gate-count implementations. MINDP implementations must use DPv1 or later.

MINDP implementations must omit the following DP features:

• Pushed-verify operation.

• Pushed-compare operation.

• The transaction counter.

MINDP implementations must observe the following conventions:

• The DPIDR.MIN field is RAO.

• The following fields of the CTRL/STAT register are RES0:

— TRNCNT.

— MASKLANE.

— STICKYCMP.

— TRNMODE.

See also CTRL/STAT.

• The ABORT.STKCMPCLR field is SBZ. Writing 0b1 to this bit is UNPREDICTABLE.
B1-42 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B1 About the DP
B1.2 Sticky flags and DP error responses
B1.2 Sticky flags and DP error responses

Sticky flags signal transaction errors and are persistent between transactions. When set, a sticky flag remains set
until the debugger actively clears it, even if the condition that caused the flag to be set no longer applies.

In the CTRL/STAT register, the sticky error flags are:

• STICKYERR, bit[5].

• STICKYCMP, bit [4].

• STICKYORUN, bit[1].

• WDATAERR, bit[7], SW-DP only.

After performing a series of APACC transactions, a debugger must check the CTRL/STAT register to check if an
error occurred. If the debugger finds that a sticky flag is set, it clears the flag, and, if necessary, initiates extra
APACC transactions to determine why the sticky flag was set. Because the flags are sticky, the debugger does not
have to check the flags after every transaction, and must only check the CTRL/STAT register periodically, which
reduces the overhead of checking for errors.

When an error is flagged, the current transaction is completed and subsequent APACC transactions are discarded
until the sticky flag is cleared.

The DP response to an error condition and the method to clear the sticky flags depends on the DP type:

• An SW-DP immediately signals an error response.

• A JTAG-DP immediately discards all transaction and marks them as complete.

For details on how to clear the sticky flags for each DP type, see the descriptions of the sticky flag fields in
CTRL/STAT, Control/Status register on page B2-57.

If pushed transactions are supported, the sticky flag CTRL/STAT.STICKYCMP reports the result of pushed
operations, see Pushed-compare and pushed-verify operations on page B1-46. CTRL/STAT.STICKYCMP behaves
in the same way as the sticky flags described in this section.

The DP uses the sticky flags in the CTRL/STAT register to signal the following transaction errors:

Read and write errors

A read or write error can occur in the DP, an AP, or the resource being accessed. In every case, when
the error is detected, the Sticky Error flag CTRL/STAT.STICKYERR is set to 0b1.

For example, a read or write error might occur if the debugger makes an AP transaction request
while the debug power domain is powered down. See Power and reset control on page B1-48 for
information about power domains.

Overrun detection

DPs support an overrun detection mode, which enables a debugger to send blocks of commands
using a connection with high latency and high throughput. These commands must be sent with
sufficient in-line delays to make overrun errors unlikely. To implement an overrun detection mode,
the DP can be programmed to set the Sticky Overrun flag, CTRL/STAT.STICKYORUN, to 0b1 if
an overrun error occurs. In overrun detection mode, the debugger must check the Sticky Overrun
flag for overrun errors after each sequence of APACC transactions.

Overrun detection mode is enabled by setting the Overrun Detect bit,
CTRL/STAT.ORUNDETECT, to 0b1.

Due to the differences between the JTAG-DP and the SW-DP, their behavior in overrun detection
mode is DATA LINK DEFINED:

JTAG-DP If the response to any transaction is not OK, the Sticky Overrun flag,
CTRL/STAT.STICKYORUN, is set to 0b1.

The response to a transaction is WAIT until the previous AP transaction is complete.
Once the AP transaction has completed, the response is FAULT.

Subsequent APACC transactions respond with FAULT, because the STICKYORUN bit
is set to 0b1. Subsequent DPACC transactions, however, respond with OK, in particular
to be able to access the CTRL/STAT register to confirm the Sticky Overrun flag status,
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B1-43
ID072524 Non-Confidential

B1 About the DP
B1.2 Sticky flags and DP error responses
and to clear the flag, after gathering any required information about the overrun
condition. See also Sticky overrun behavior on DPACC and APACC accesses on
page B3-105.

SW-DP If the response to any transaction is not OK, the Sticky Overrun flag, CTRL/STAT.
STICKYORUN, is set to 0b1.

If a previous AP transaction is incomplete, the first response to a transaction is WAIT.
Subsequent responses are FAULT, because the STICKYORUN flag is 0b1. See Sticky
overrun behavior on page B4-123.

The value of the Sticky Error flag, CTRL/STAT.STICKYERR, is not changed.

Note

The method for clearing the STICKYORUN flag depends on whether the DP type is SW-DP or
JTAG-DP. See the descriptions of the STICKYORUN field in CTRL/STAT, Control/Status register
on page B2-57 for more information.

If a new transaction results in an overrun error while an earlier transaction is incomplete, the earlier
transaction completes normally. Other sticky flags, however, might be set to 0b1 during completion
of the earlier transaction.

If the debugger clears the ORUNDETECT flag while STICKYORUN is 0b1, the resulting value of
STICKYORUN is UNKNOWN.

To leave overrun detection mode, a debugger must perform the following steps:

1. Check the value of the CTRL/STAT.STICKYORUN flag.

2. If the STICKYORUN flag is 0b1, clear it to 0b0.

3. To disable overrun detection mode, clear the ORUNDETECT flag to 0b0.

Protocol errors (SW-DP only)

The SW-DP can generate protocol errors, for example in the case of wire-level errors.

Note

Although protocol errors can only occur in the SW-DP, they are described in this chapter because
they are part of the sticky flags error-handling mechanism.

The required response is as follows:

• If the SW-DP detects a protocol error in a packet request, the DP does not respond to the
message.

• If the SW-DP detects a parity error in the data phase of a write transaction, it sets the Sticky
Write Data Error flag, CTRL/STAT.WDATAERR. The Sticky Write Data Error flag is treated
in the same way as the other sticky flags described in this section.

For more information, see Parity on page B4-116 and Protocol error response on page B4-122.
B1-44 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B1 About the DP
B1.3 The transaction counter
B1.3 The transaction counter

Except for MINDP implementations, DPs must include an AP transaction counter, CTRL/STAT.TRNCNT. The
transaction counter enables a debugger to generate a sequence of AP transactions with a single AP transaction
request. With a MEM-AP access, the transaction counter enables an AP transaction to generate a sequence of
accesses to the connected memory system.

Note

Each AP defines which registers support sequences of transactions. If an AP register does not support sequences of
transactions, or SELECT.ADDR selects an AP that is not present, then the result of a sequence of transactions to
that register is UNPREDICTABLE. Reserved AP registers and the common AP IDR do not support sequences of
transactions.

Examples of the use of the transaction counter are:

Memory fill operations

To facilitate memory fill operations, the transaction counter can repeatedly write a single data value
that is supplied in an AP transaction request. The MEM-AP includes a mechanism that initiates a
series of AP accesses and automatically increments the access address after each AP access. This
mechanism results in the supplied data value being written to a sequence of memory addresses under
the control of the transaction counter. For more information, see Packed transfers on page C2-187.

Fast searches and memory verification

To perform a fast search, or verify of an area of memory, the transaction counter can be used when
reading from the DRW register, with pushed-compare or pushed-verify operations enabled. For
examples of this application, see Pushed-compare and pushed-verify operations on page B1-46,
and, for more details, Example of using the transaction counter for a pushed-compare operation on
a MEM-AP on page C2-197.

Writing a value other than zero to the CTRL/STAT.TRNCNT field generates multiple AP transactions. For example,
writing 0x001 to this field generates two AP transactions, and writing 0x002 generates three transactions.

If the transaction counter is not zero, it is decremented after each successful transaction. If one of the following is
true, the transaction counter is not decremented and the transaction is not repeated:

• The transaction counter is zero.

• The CTRL/STAT.STICKYERR flag is 0b1.

• The CTRL/STAT.STICKYCMP flag is 0b1.

If a sequence of operations is terminated because the Sticky Error or Sticky Compare flag was set to 0b1, the
transaction counter remains at the value from the last successful transaction. This enables the software to recover
the location of the error or determine where the compare or verify operation terminated.

The transaction counter does not automatically reload when it reaches zero.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B1-45
ID072524 Non-Confidential

B1 About the DP
B1.4 Pushed-compare and pushed-verify operations
B1.4 Pushed-compare and pushed-verify operations

The DP supports pushed operations. Pushed operations improve performance where writes might be faster than
reads. They are used as part of in-line tests, for example Flash ROM programming and monitor communication.

Pushed operations use the following mechanism:

1. The debugger initiates an AP write transaction. The value to be written is stored in the DP.

2. The DP reads a value from the AP.

Note
Whenever an AP write transaction is performed with pushed-compare or pushed-verify enabled, the AP
access that results is a read operation, not a write.

3. The DP then compares the two values and updates the Sticky Compare flag, CTRL/STAT.STICKYCMP,
based on the result of the comparison. Whenever the STICKYCMP bit is set to 0b1 in this way, any
outstanding transaction repeats are canceled.

Note

Performing an AP read transaction with pushed-compare or pushed-verify enabled causes UNPREDICTABLE
behavior.

If an SW-DP performs an AP read transaction with pushed-compare or pushed-verify, an UNKNOWN value is
returned, and the read has UNPREDICTABLE side effects, even though the wire-level protocol remains coherent.

Each AP defines which registers support pushed transactions. If an AP register does not support pushed transactions,
or SELECT.ADDR selects an AP that is not present, a pushed transaction sets STICKYCMP to an UNKNOWN value.
Reserved AP registers and the common AP IDR do not support pushed transactions.

To configure pushed operations, use the CTRL/STAT register:

1. Enable the appropriate transfer mode using the Transfer Mode field, TRNMODE:

• A value of 0b01 in TRNMODE selects pushed-verify operations: if the values match, the
STICKYCMP flag is set to 0b1.

• A value of 0b10 in TRNMODE selects pushed-compare operations: if the values do not match, the
STICKYCMP flag is set to 0b1.

2. Select the byte lanes to be included in the comparison using the byte lane mask field, MASKLANE. A value
of 0b1 for bit n of MASKLANE includes byte n of the APACC write value and the current AP value in the
comparison. For details about the MASKLANE field, see CTRL/STAT, Control/Status register on
page B2-57.

The following are examples of applications of pushed-verify and pushed-compare MEM-AP operations:

• Pushed-verify can be used to verify the contents of system memory. A series of expected values are written
as AP transactions. With each write, the pushed-verify logic initiates an AP read access, and compares the
result of this access with the expected value. If the values do not match, the CTRL/STAT.STICKYCMP flag
is set to 0b1. This operation is described in more detail in Example of using a pushed-verify operation on a
MEM-AP on page C2-196.

• Pushed-compare can be used to search system memory for a given value. However, this feature is most useful
when it is performed using the AP transaction counter, which is described in The transaction counter on
page B1-45. This operation is described in more detail in Chapter C2 The Memory Access Port section
Example of using the transaction counter for a pushed-compare operation on a MEM-AP on page C2-197.

The following example describes pushed operations on a specific AP, which makes it easier to understand how
pushed operations are implemented. Consider an AP write transaction to the Data Read/Write (DRW) register in a
MEM-AP with a TRNMODE value of 0b10, and a MASKLANE value of 0b0101. The following actions take place:

1. The DP holds the data value from the AP write transaction in the pushed-compare logic, see Figure A1-3 on
page A1-30.

2. The AP reads from the address indicated by the MEM-AP Transfer Address Register (TAR).
B1-46 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B1 About the DP
B1.4 Pushed-compare and pushed-verify operations
3. The value that is returned by this read is compared with the value held in the pushed-compare logic. The
comparison is masked using the value of MASKLANE. The example value, 0b0101, includes byte lanes zero
and two in the comparison. The result is either a match or a mismatch.

4. In the example, the TRNMODE value of 0b10 selects pushed-compare operations:

• If the result of the comparison was a mismatch, the CTRL/STAT.STICKYCMP flag is set to 0b1 and
any outstanding transactions are canceled.

• If the result of the comparison was a match, nothing happens.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B1-47
ID072524 Non-Confidential

B1 About the DP
B1.5 Power and reset control
B1.5 Power and reset control

The DP supports the following power and reset control fields in the CTRL/STAT register:

• Control fields for system and debug power control, CDBGPWRUPREQ, CDBGPWRUPACK,
CSYSPWRUPREQ, and CSYSPWRUPACK. For more information, see System and debug power control
behavior on page B2-82.

• Control fields for debug reset control, CDBGRSTREQ and CDBGRSTACK. For more information, see
Debug reset control behavior on page B2-87.

These control bits are programmable by the debugger, and drive signals into the target system.

When controlled by the power and reset control fields in the CTRL/STAT register, a debug logic reset can be
achieved by using the CDBGRSTREQ field, but CTRL/STAT does not provide any control bits for requesting a
system reset. However, it is common for the physical interface to the debugger to include a system reset pin, nSRST.
This is intended to provide requests or stimuli into existing power and reset controllers. For details about how to
implement a system reset pin, see System reset control behavior on page B2-89.

Arm recommends using CDBGRSTREQ only as a last resort to unblock a locked up system. CDBGRSTREQ might
affect more than just locked up logic and must be used carefully.

nSRST might also cause a reset of debug logic, but is required to release the reset of debug logic to allow a debugger
to program the debug logic while holding the system in reset.

ADI does not replace the system power and reset controllers.This specification does not place any requirements on
the operation of system power and reset controllers.
B1-48 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Chapter B2
DP Reference Information

This chapter contains the following reference information for the DP:

• DP architecture versions on page B2-50.

• DP register descriptions on page B2-53.

• System and debug power control behavior on page B2-82.

• Debug reset control behavior on page B2-87.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-49
ID072524 Non-Confidential

B2 DP Reference Information
B2.1 DP architecture versions
B2.1 DP architecture versions

This section introduces the concept of DP architecture versions and describes the DP registers for the DP
architecture version DPv3. It contains the following subsections:

• DP architecture versions summary.

• DP architecture version 3 (DPv3) address map on page B2-51.

One of the significant differences between the JTAG-DP and the SW-DP is how the registers are accessed. For this
reason, the tables that describe the registers do not include register address information. This information is included
at the start of the detailed description of each register for each DP type.

Several aspects of the DP architecture are DATA LINK DEFINED, and described in the following chapters:

• Chapter B3 The JTAG Debug Port.

• Chapter B4 The Serial Wire Debug Port.

• Chapter B5 The Serial Wire/JTAG Debug Port.

B2.1.1 DP architecture versions summary

Every ADI includes a single DP that is compliant with one of the DP architecture versions. Table B2-1 shows the
DP architecture versions.

Although the DP architecture versions are different, their register sets are similar, as summarized in Table B2-2. For
details about how the register is implemented in a specific architecture version and if the implementation is DATA
LINK DEFINED, see DP register descriptions.

Table B2-1 DP architecture versions

Version number Description Debug Port Support Notes

DPv0 DP architecture version 0 JTAG-DP JTAG-DP in ADIv5.0

DPv1 DP architecture version 1 SW-DP, JTAG-DP SW-DP in ADIv5.0

DPv2 DP architecture version 2 SW-DP, JTAG-DP SW-DP version 2 in ADIv5.1

DPv3 DP architecture version 3 SW-DP, JTAG-DP

Table B2-2 Summary of DP registers

Name
DP architecture version

DPv0 DPv1 DPv2 DPv3

ABORT Yes Yes Yes Yes

DPIDR No Yes Yes Yes

DPIDR1 No No No Yes

BASEPTR0 No No No Yes

BASEPTR1 No No No Yes

CTRL/STAT Yes Yes Yes Yes

SELECT Yes Yes Yes Yes

SELECT1 No No No Yes

RDBUFF Yes Yes Yes Yes

DLCR No Yes Yes Yes
B2-50 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.1 DP architecture versions
B2.1.2 DP architecture version 3 (DPv3) address map

DPv3 modifies the DP register map in the following ways:

• Modified DPIDR to includes DPv3 as a permitted version.

• Extends the SELECT register and introduces the SELECT1 register to support 64-bit system addresses.

• Introduces support for JTAG DP Protocol version 1.

• Introduces definitions for the following registers:

— The Debug Port Identification Register 1, DPIDR1.

— The Base Pointer Registers, BASEPTR0-BASEPTR1.

The SELECT.DPBANKSEL field determines which register is accessed at addresses 0x0 and 0x4.

Table B2-3 shows the DPv3 register map.

RESEND No Yes Yes Yes

TARGETID No No Yes Yes

DLPIDR No No Yes Yes

TARGETSEL No No Yes Yes

Table B2-2 Summary of DP registers (continued)

Name
DP architecture version

DPv0 DPv1 DPv2 DPv3

Table B2-3 DPv3 address map

Addressa DPBANKSELb Name Access Notes

0x0 0x0 DPIDR RO -

0x1 DPIDR1 RO -

0x2 BASEPTR0 RO -

0x3 BASEPTR1 RO -

0x4-0xF - RO Reserved, RES0.

x - WO DATA LINK DEFINED, as either:

• ABORT, see ABORT, Abort register
on page B2-53

• Reserved, RES0

0x4 0x0 CTRL/STAT RW -

0x1 DLCR RW -

0x2 TARGETID RO -

0x3 DLPIDR RO -

0x4 EVENTSTAT RO -

0x5 SELECT1 WO -

All other values - - Reserved, RES0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-51
ID072524 Non-Confidential

B2 DP Reference Information
B2.1 DP architecture versions
The ability to request a transaction abort using the ABORT register is optional in the DP:

• Whether the ABORT register is implemented is IMPLEMENTATION DEFINED.

• If the ABORT register is implemented, how it is accessed is DATA LINK DEFINED:

— If defined by the data link, DP register 0 is reserved for this purpose.

— In JTAG-DP, the ABORT register is implemented through the ABORT instruction.

• If the ABORT register is implemented in the DP, it is optional whether an outstanding transaction to an AP
is aborted. If a transaction in progress cannot be aborted, it is permitted that access to a component is not
possible without resetting the system.

Arm recommends that a DP implements the ability to request aborts.

B2.1.3 Register maps, and accesses to reserved addresses

The register memory maps for the DP and the AP are shown in:

• Figure A1-3 on page A1-30, for accesses to JTAG-DP registers.

• Figure C2-1 on page C2-173, for accesses to MEM-AP registers.

• Figure C3-1 on page C3-244, for accesses to JTAG-AP registers.

There are several reserved addresses in these register maps. Reserved AP registers are RES0.

0x8 x - RO DATA LINK DEFINED

SELECT WO -

0xC x RDBUFF RO -

- WO DATA LINK DEFINED

a. Bits [1:0] of the address are always 0b00.

b. SELECT.DPBANKSEL field.

Table B2-3 DPv3 address map (continued)

Addressa DPBANKSELb Name Access Notes
B2-52 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
B2.2 DP register descriptions

This section gives full descriptions of the DP registers.

The registers are listed alphabetically by name.

B2.2.1 ABORT, Abort register

The ABORT register characteristics are:

Purpose The ABORT register forces an AP transaction abort.

From a software perspective, an abort is a fatal operation. It discards any outstanding and pending
transactions, and leaves the AP in an UNPREDICTABLE state. On an SW-DP, however, the sticky error
bits are not cleared to 0b0.

Writing 0b1 to the ABORT.DAPABORT register bit generates an AP abort, causing the current AP
transaction to abort. This action also terminates the transaction counter, if it was active. It is
IMPLEMENTATION DEFINED whether the AP propagates the abort, for example by aborting a
transaction in progress.

After an AP abort:

• It is IMPLEMENTATION DEFINED which registers, if any, in the AP that was aborted can be
accessed. If the register cannot be accessed, the DP returns a WAIT response to an AP access
to the register. Arm recommends that any AP register that is not directly related to a stalling
transaction is accessible, to allow a debugger to diagnose the cause of the error.

• DP accesses or AP accesses to any other APs or other components are accepted by the DP.

Caution

Use this function only in extreme cases, when debug host software has observed stalled target
hardware for an extended period. Stalled target hardware is indicated by repeated WAIT responses.

Usage Constraints

The register is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit write-only DP architecture register.

Default

WO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-53
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
Field descriptions

The ABORT bit assignments are:

Bits[31:5]

Reserved, SBZ.

ORUNERRCLR, bit[4]

To clear the CTRL/STAT.STICKYORUN overrun error bit to 0b0, write 0b1 to this bit.

WDERRCLR, bit[3]

To clear the CTRL/STAT.WDATAERR write data error bit to 0b0, write 0b1 to this bit.

STKERRCLR, bit[2]

To clear the CTRL/STAT.STICKYERR sticky error bit to 0b0, write 0b1 to this bit.

STKCMPCLR, bit[1]

To clear the CTRL/STAT.STICKYCMP sticky compare bit to 0b0, write 0b1 to this bit. It is
IMPLEMENTATION DEFINED whether the CTRL/STAT.STICKYCMP bit is implemented. See
MINDP, Minimal DP extension on page B1-42.

DAPABORT, bit[0]

To generate an AP abort, which aborts the current AP transaction, write 0b1 to this bit.

Do this write only if the debugger has received WAIT responses over an extended period.

Accessing ABORT

Access to ABORT is DATA LINK DEFINED:

JTAG-DP Access is through its own scan-chain. See the ABORT, JTAG-DP Abort register on page B3-100.

SW-DP Accessed by a write to offset 0x0 of the DP register map.

Location Offset

DP register map 0x0

Reserved, SBZ

31 5 4 3 2 1 0

ORUNERRCLR
WDERRCLR

STKERRCLR
STKCMPCLR

DAPABORT
B2-54 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.2 BASEPTR0-BASEPTR1, Base Pointer 0 and 1

The BASEPTR0-BASEPTR1 characteristics are:

Purpose

BASEPTR0 and BASEPTR1 provide an initial system address for the first component in the
system. Typically, the system address is the address of a top-level ROM Table which indicates
where APv2 APs are located.

The size of the address is defined in DPIDR1.ASIZE. DPIDR1.ASIZE defines the size of the whole
address including bits[11:0], even though bits[11:0] are always zero. For example, if
DPIDR1.ASIZE indicates a 32-bit address, the value of BASEPTR0 indicates bits[31:0] of the base
address, bits[11:0] always zero. Unimplemented bits are RES0.

Usage Constraints

If DPIDR1.ASIZE indicates a 12-bit address, all bits comprising the fields BASEPTR0.PTR and
BASEPTR1.PTR are RES0. To indicate that there is a component at address 0x000,
BASEPTR0.VALID must be set to 0b1. If there is no component at address 0x000,
BASEPTR0.VALID must be set to 0b0.

The register is accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of two 32-bit DP architecture registers.

Field descriptions

The BASEPTR0-BASEPTR1 bit assignments are:

PTR, BASEPTR1[31:0] : BASEPTR0 bits[31:12]

The base address of the first component in the system, formed by concatenating bits[31:0] of
BASEPTR1 with bits[31:12] of BASEPTR0. BASEPTR1.PTR provides bits [63:32] of the base
address, and BASEPTR0.PTR provides bits [31:12] of the base address.

The address is aligned to a 4KB boundary.

Bits[11:1] of BASEPTR0

Reserved, RES0.

Default

RO

31 12 11 0

PTR RES0

VALID

1

0x0,
DPBANKSEL=0x2BASEPTR0

31 0

PTR 0x0,
DPBANKSEL=0x3BASEPTR1
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-55
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
VALID, BASEPTR0 bit[0]

Indicates whether the PTR field specifies a valid base address. This field can have one of the
following values:

0b0 No valid base address is specified. The value of the PTR field is UNKNOWN.

0b1 The PTR field specifies a valid base address.

Accessing BASEPTR0-BASEPTR1

BASEPTR0-BASEPTR1 can be accessed at the following addresses:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

BASEPTR0 0x0 0x2

BASEPTR1 0x0 0x3
B2-56 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.3 CTRL/STAT, Control/Status register

The CTRL/STAT characteristics are:

Purpose

CTRL/STAT is a DP architecture register that is used to control and obtains status information about
the DP.

Usage Constraints

Access to CTRL/STAT and its value after a powerup reset are defined for each field individually, as
shown in the table. Some of fields are RO, meaning they ignore writes. See the field descriptions
for detailed information.

Configurations

Included in all implementations.

Attributes

A 32-bit read/write register.

Field Access Value after powerup reset

CSYSPWRUPACK RO

CSYSPWRUPREQ RW 0b0

CDBGPWRUPACK RO

CDBGPWRUPREQ RW 0b0

CDBGRSTACK RO

CDBGRSTREQ IMPLEMENTATION DEFINED, RW, or
RAZ/WI. See Debug reset control behavior
on page B2-87.

0b0

ERRMODE RW

TRNCNTa

a. MASKLANE, TRNCNT, TRNMODE, and STICKYCMP are not supported in MINDP configuration. In
MINDP configuration, the effect of writing a value other than zero to TRNCNT, TRNMODE, or
STICKYCMP is UNPREDICTABLE.

RW UNKNOWN

MASKLANEa RW UNKNOWN

WDATAERR DATA LINK DEFINED, RES0 or RO/WI.
See field description.

0b0

READOK DATA LINK DEFINED, RES0 or RO/WI.
See field description.

0b0

STICKYERR DATA LINK DEFINED, R/W1C or RO/WI.
See field description.

0b0

STICKYCMPa DATA LINK DEFINED, R/W1C or RO/WI.
See field description.

0b0

TRNMODEa RW UNKNOWN

STICKYORUN DATA LINK DEFINED, R/W1C or RO/WI.
See field description.

ORUNDETECT RW 0b0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-57
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
Field descriptions

The CTRL/STAT bit assignments are:

CSYSPWRUPACK, bit[31]

System powerup acknowledge. Indicates the status of the CSYSPWRUPACK signal. See Power
control requirements and operation on page B2-84.

This bit is RO, meaning it ignores writes.

CSYSPWRUPREQ, bit[30]

System powerup request. This bit controls the CSYSPWRUPREQ signal. See Power control
requirements and operation on page B2-84.

After a powerup reset, this bit is 0b0.

CDBGPWRUPACK, bit[29]

Debug powerup acknowledge. Indicates the status of the CDBGPWRUPACK signal. See Power
control requirements and operation on page B2-84.

This bit is RO, meaning it ignores writes.

CDBGPWRUPREQ, bit[28]

Debug powerup request. This bit controls the CDBGPWRUPREQ signal. See Power control
requirements and operation on page B2-84.

After a powerup reset, this bit is 0b0.

CDBGRSTACK, bit[27]

Debug reset acknowledge. Indicates the status of the CDBGRSTACK signal. See Debug reset
control behavior on page B2-87.

This bit is RO, meaning it ignores writes.

CDBGRSTREQ, bit[26]

Debug reset request. This bit controls the CDBGRSTREQ signal. See Debug reset control
behavior on page B2-87.

It is IMPLEMENTATION DEFINED whether this bit is RW or RAZ/WI. See Debug reset control
behavior on page B2-87.

After a powerup reset, this bit is 0b0.

Bit[25]

Reserved, RES0.

31 5 4 3 2 1 0

WDATAERR
READOK

STICKYERR

TRNMODE

30 29 28 27 26 25 24 23 12 11 8 7 6

TRNCNT

CSYSPWRUPACK
CSYSPWRUPREQ
CDBGPWRUPACK
CDBGPWRUPREQ
CDBGRSTACK
CDBGRSTREQ

RES0

MASKLANE

STICKYCMP

STICKYORUN
ORUNDETECT

ERRMODE
B2-58 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
ERRMODE, bit[24]

Error mode. Indicates the reset behavior of the CTRL/STAT.STICKYERR field. See also the
description of the STICKYERR field.

This field is defined for DPv3 and later. In earlier DP architectures, this field is RES0.

ERRMODE can have one of the following values:

0b0 Errors on AP transactions set CTRL/STAT.STICKYERR and
CTRL/STAT.STICKYERR remains set until explicitly cleared.

0b1 Errors on AP transactions set CTRL/STAT.STICKYERR, and
CTRL/STAT.STICKYERR is cleared when a FAULT response is output.

If ERRMODE is 0b1, an error that occurs on an AP transaction might be reported to the
debugger via a FAULT response, but does not require the debugger to explicitly clear
CTRL/STAT.STICKYERR. The JTAG-DP or SW-DP transaction that caused the
FAULT response does not succeed, and CTRL/STAT.STICKYERR is cleared to 0b0,
allowing future transactions to be attempted.

After a powerup reset, the value of this field is 0b0.

TRNCNT, bits[23:12]

Transaction counter. See The transaction counter on page B1-45.

After a powerup reset, the value of this field is UNKNOWN.

Note

It is IMPLEMENTATION DEFINED whether this field is implemented.

TRNCNT is not supported in MINDP configuration. In MINDP configuration, the effect of writing
a value other than zero to TRNCNT or TRNMODE is UNPREDICTABLE. See also MINDP, Minimal
DP extension on page B1-42.

MASKLANE, bits[11:8]

For pushed operations, the DP performs a byte-by-byte comparison of the word that is supplied in
an AP write transaction with the current word at the target AP address. The MASKLANE field is
used to select the bytes to be included in this comparison. For more information about pushed
operations, see Pushed-compare and pushed-verify operations on page B1-46.

Each of the 4 bits of the MASKLANE field corresponds to one of the four bytes of the words to be
compared. Therefore, each bit is said to control one byte lane of the compare operation.

Table B2-4 shows how the bits of MASKLANE control the comparison masking.

Table B2-4 Control of pushed operation comparisons by MASKLANE

MASKLANE Effect
Bits included in
comparisonsa

a. Whether other bits are included is determined by the other bits of MASKLANE:

To compare the whole word, MASKLANE is set to 0b1111 to include all byte lanes.

If a MASKLANE bit is 0b0, the corresponding byte lane is excluded from the comparison.

0b1xxx Include byte lane 3 in comparisons. Bits[31:24].

0bx1xx Include byte lane 2 in comparisons. Bits[23:16].

0bxx1x Include byte lane 1 in comparisons. Bits[15:8].

0bxxx1 Include byte lane 0 in comparisons. Bits[7:0].
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-59
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
Note

The following applies to the MASKLANE field:

• MASKLANE is only relevant if the Transfer Mode field TRNMODE is 0b01, for
pushed-verify operations, or 0b10, for pushed-compare operations. See the description of the
TRNMODE field and Pushed-compare and pushed-verify operations on page B1-46.

• It is IMPLEMENTATION DEFINED whether MASKLANE is implemented. See MINDP,
Minimal DP extension on page B1-42.

• After a powerup reset, the value of MASKLANE is UNKNOWN.

WDATAERR, bit[7]

This bit is set to 0b1 if one of the following Write Data Error occurs:

• A parity or framing error on the data phase of a write.

• A write that has been accepted by the DP is then discarded without being submitted to the AP.

For more information, see Sticky flags and DP error responses on page B1-43.

Access to and how to clear this field are DATA LINK DEFINED:

JTAG-DP, all implementations

Access is reserved, RES0.

SW-DP, all implementations

• Access is RO/WI.

• To clear WDATAERR to 0b0, write 0b1 to the ABORT.WDERRCLR field in the
ABORT register. A single write of the ABORT register can be used to clear
multiple flags if necessary.

After clearing the WDATAERR flag, the corrupted data is typically resent.

After a powerup reset, WDATAERR is 0b0.

READOK, bit[6]

This bit is DATA LINK DEFINED:

• On JTAG-DP, the bit is reserved, RES0.

• On SW-DP, access is RO/WI.

If the response to the previous AP read or RDBUFF read was OK, the bit is set to 0b1. If the
response was not OK, it is cleared to 0b0.

This flag always indicates the response to the last AP read access. See Protocol error
response on page B4-122.

After a powerup reset, this bit is 0b0.

Note

This field is defined for DPv1 and higher only.

STICKYERR, bit[5]

This bit is set to 0b1 if an error is returned by an AP transaction. See Sticky flags and DP error
responses on page B1-43.

Access to and how to clear this field are DATA LINK DEFINED:

JTAG-DP, all implementations

• Access is R/W1C.

• To clear STICKYERR to 0b0, write 0b1 to it, which signals the DP to clear the
flag and set it to 0b0. A single write of the CTRL/STAT register can be used to
clear multiple flags if necessary. STICKYERR can also be cleared by writing 0b1
to the ABORT.STKERRCLR field.
B2-60 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
SW-DP, all implementations

• Access is RO/WI.

• To clear STICKYERR to 0b0, write 0b1 to the ABORT.STKERRCLR field in the
ABORT register. A single write of the ABORT register can be used to clear
multiple flags if necessary.

After clearing CTRL/STAT.STICKYERR, you must find the location where the error that caused
the flag to be set occurred.

After a powerup reset, this bit is 0b0.

STICKYCMP, bit[4]

This bit is set to 0b1 when a mismatch occurs during a pushed-compare operation or a match occurs
during a pushed-verify operation. See Pushed-compare and pushed-verify operations on
page B1-46.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal DP
extension on page B1-42.

Access to and how to clear this field are DATA LINK DEFINED:

JTAG-DP, all implementations

• Access is R/W1C.

• To clear STICKYCMP to 0b0, write 0b1 to it, which signals the DP to clear the
flag and set it to 0b0. A single write of the CTRL/STAT register can be used to
clear multiple flags if necessary. STICKYCMP can also be cleared by writing 0b1
to the ABORT.STKERRCLR field.

SW-DP, all implementations

• Access is RO/WI.

• To clear STICKYCMP to 0b0, write 0b1 to the ABORT.STKCMPCLR field in the
ABORT register. A single write of the ABORT register can be used to clear
multiple flags if necessary.

After clearing CTRL/STAT.STICKYCMP, you must retrieve the value of the transaction counter to
find the location where the error that caused the flag to be set occurred.

After a powerup reset, this bit is 0b0.

TRNMODE, bits[3:2]

This field sets the transfer mode for AP operations.

In normal operation, AP transactions are passed to the AP for processing, as described in Using the
AP to access debug resources on page A1-31.

In pushed-verify and pushed-compare operations, the DP compares the value that is supplied in an
AP write transaction with the value held in the target AP address. The AP write transaction
generates a read access to the debug memory system as described in Pushed-compare and
pushed-verify operations on page B1-46.

TRNMODE can have one of the following values:

0b00 Normal operation.

0b01 Pushed-verify mode.

0b10 Pushed-compare mode.

0b11 Reserved.

After a powerup reset, the value of this field is UNKNOWN.

Note

It is IMPLEMENTATION DEFINED whether this field is implemented.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-61
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
TRNMODE is not supported in MINDP configuration. In MINDP configuration, the effect of
writing a value other than zero to TRNCNT or TRNMODE is UNPREDICTABLE. See also MINDP,
Minimal DP extension on page B1-42.

STICKYORUN, bit[1]

If overrun detection is enabled, this bit is set to 0b1 when an overrun occurs. See bit[0] of this register
for details of enabling overrun detection.

Access to and how to clear this field are DATA LINK DEFINED:

JTAG-DP, all implementations

• Access is R/W1C.

• To clear STICKYORUN to 0b0, write 0b1 to it, which signals the DP to clear the
flag and set it to 0b0. A single write of the CTRL/STAT register can be used to
clear multiple flags if necessary. STICKYORUN can also be cleared by writing
0b1 to the ABORT.STKERRCLR field.

SW-DP, all implementations

• Access is RO/WI.

• To clear STICKYORUN to 0b0, write 0b1 to the ABORT.ORUNERRCLR field
in the ABORT register. A single write of the ABORT register can be used to clear
multiple flags if necessary.

After clearing CTRL/STAT.STICKYORUN, you must find out which DP or AP transaction
initiated the overrun that caused the flag to be set, and repeat the transactions for that DP or AP from
the transaction pointed to by the transaction counter.

After a powerup reset, this bit is 0b0.

ORUNDETECT, bit[0]

This bit can have one of the following values:

0b0 Overrun detection is disabled.

0b1 Overrun detection is enabled.

For more information about overrun detection, see Sticky flags and DP error responses on
page B1-43.

After a powerup reset, this bit is 0b0.

Accessing CTRL/STAT

CTRL/STAT can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x4 0x0
B2-62 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.4 DLCR, Data Link Control Register

The DLCR characteristics are:

Purpose

Controls the operating mode of the Data Link.

Usage Constraints

DLCR is DATA LINK DEFINED:

• For a JTAG DP, the DLCR register is RES0.

• For an SW-DP, the DLCR register has the fields that are described in Field descriptions on
page B2-65.

DLCR is accessible as follows:

Configurations

Included in all implementations.

Attributes A 32-bit DATA LINK DEFINED DP architecture register.

Field descriptions

The DLCR bit assignments for an SW-DP are:

Bits[31:10]

Reserved, RES0.

TURNROUND, bits[9:8]

For an SW-DP, this field defines the turnaround tristate period. For details about line turnaround,
see Line turnaround on page B4-115. Table B2-5 shows the permitted values of this field, and their
meanings.

Default

RW

Table B2-5 Turnaround tristate period field, TURNROUND, bit definitions

DLCR.TURNROUND Turnaround tristate period

0b00 1 data perioda.

a. A data period is the period of a single data bit on the SWD interface.

0b01 2 data periodsa.

0b10 3 data periodsa.

0b11 4 data periodsa.

RES0RES0

31 010 9 8 7 6 5

TURNROUND
RES0
RES1
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-63
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
After a powerup or line reset, this field is 0b00.

Note

Support for varying the turnaround tristate period is IMPLEMENTATION DEFINED. An implementation
that does not support variable turnaround must treat writing a value other than 0b00 to the
TURNROUND field as an immediate protocol error.

Bit[7]

Reserved, RES0.

Bit[6]

Reserved, RES1.

Bits[5:0]

Reserved, RES0.

Accessing DLCR

DLCR can be accessed at the following address:

B2.2.5 DLPIDR, Data Link Protocol Identification Register

The DLPIDR characteristics are:

Purpose DLPIDR provides protocol version information.

Usage Constraints

DLPIDR is accessible as follows:

Configurations

Included in all implementations.

SW-DP configurations

An SWD Port must implement at least SWD protocol version 2.

JTAG-DP configurations

A JTAG Port must implement at least JTAG protocol version 1.

Attributes

A 32-bit DATA LINK DEFINED register.

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x4 0x1

Default

RO
B2-64 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
Field descriptions

For DPs that implement the DLPIDR, the bit assignments are:

TINSTANCE, bits[31:28]

IMPLEMENTATION DEFINED. Defines an instance number for this device. This value must be unique
for all devices with identical TARGETID.TPARTNO and TARGETID.TDESIGNER fields that are
connected together in a multi-drop system.

Bits[27:4]

RES0.

PROTVSN, bits[3:0]

Defines the SWD or JTAG protocol version that is implemented.

For a SW-DP, this field can have one of the following values:

0x1 SWD protocol version 2. Adds support for multidrop extensions. See Chapter B4 The
Serial Wire Debug Port.

Other Reserved.

For a JTAG-DP, this field can have one of the following values:

0x0 JTAG-DP protocol version 0.

0x1 JTAG-DP protocol version 1.

Other Reserved.

Accessing DLPIDR

DLPIDR can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x4 0x3

PROTVSNRES0

31 28 27 4 3 0

TINSTANCE
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-65
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.6 DPIDR, Debug Port Identification Register

The DPIDR characteristics are:

Purpose

DPIDR provides information about the Debug Port.

Usage Constraints

DPIDR is accessible as follows:

Configurations

Included in all implementations.

Note

In DPv0, the DPIDR is reserved and accesses are UNPREDICTABLE.

In all DP architecture versions, a JTAG-DP implementation must implement the IDCODE
instruction and IDCODE scan-chain. The architecture does not require that the TAP IDCODE
register value and the DPIDR value are the same.

Attributes A 32-bit DP architecture register.

Field descriptions

The DPIDR bit assignments are:

REVISION, bits[31:28]

Revision code. The meaning of this field is IMPLEMENTATION DEFINED.

PARTNO, bits[27:20]

Part Number for the DP. This value is provided by the designer of the DP and must not be changed.

Bits[19:17] Reserved, RES0.

MIN, bit[16] MINDP functions implemented:

0b0 Transaction counter, Pushed-verify, and Pushed-find operations are implemented.

0b1 Transaction counter, Pushed-verify, and Pushed-find operations are not implemented.

VERSION, bits[15:12]

Version of the DP architecture implemented. Permitted values are:

0x0 Reserved. Implementations of DPv0 do not implement DPIDR.

0x1 DPv1 is implemented.

0x2 DPv2 is implemented.

0x3 DPv3 is implemented.

All remaining values are reserved.

Default

RO

DESIGNERRES0PARTNOREVISION VERSION

MIN

31 28 27 20 19 17 16 15 12 11 2 1 0

RAO
B2-66 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
DESIGNER, bits[11:1]

Code that identifies the designer of the DP.

This field indicates the designer of the DP and not the implementer, except where the two are the
same. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit. For example,
Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

The encoding that is used in the DPIDR is as follows:

• The JEP106 continuation code, DPIDR bits[11:8], is the number of times that 0x7F appears
before the final number. For example, for Arm Limited this field is 0x4.

• The JEP106 identification code, IDR bits[7:1], equals bits[6:0] of the final number of the
JEDEC code. For example, for Arm Limited this field is 0x3B.

Bit[0] RAO.

Accessing DPIDR

DPIDR can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x0 0x0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-67
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.7 DPIDR1, Debug Port Identification Register 1

The DPIDR1 characteristics are:

Purpose

DPIDR1 provides information about the Debug Port.

Usage Constraints

Reads of DPIDR1 must be processed immediately and must not issue a WAIT response.

DPIDR1 is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit DP architecture register.

Field descriptions

The DPIDR1 bit assignments are:

Bits[31:8]

RES0.

ERRMODE, bit[7]

Error reporting mode support. This field can have one of the following values:

0b0 CTRL/STAT.ERRMODE is not implemented.

0b1 CTRL/STAT.ERRMODE is implemented.

ASIZE, bits[6:0]

Address size. This field selects the size of the addresses in the SELECT on page B2-76, SELECT1
on page B2-76, BASEPTR0 on page B2-55, and BASEPTR1 on page B2-55 registers, and can have
one of the following values:

0x0C 12-bit address.

0x14 20-bit address.

0x20 32-bit address.

0x28 40-bit address.

0x30 48-bit address.

0x34 52-bit address.

All remaining values are reserved.

Default

RO

ASIZERES0

ERRMODE

31 8 7 06
B2-68 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
Accessing DPIDR1

DPIDR1 can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x0 0x1
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-69
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.8 EVENTSTAT, Event Status register

The EVENTSTAT register characteristics are:

Purpose

EVENTSTAT is used by the system to signal an event to the external debugger. The nature of the
event is IMPLEMENTATION DEFINED.

Arm recommends connecting EVENTSTAT to one of the following:

• An output trigger of a CoreSight Cross-Trigger Interface (CTI) with software acknowledge.

• An output from a uniprocessor system that indicates whether the processor is halted:

— For Armv6-M, Armv7-M, and Armv8-M processors, the recommended HALTED
signal.

— For all other Arm architecture processors, the recommended DBGACK signal.

Usage Constraints

EVENTSTAT is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit RO register.

Field descriptions

The EVENTSTAT bit assignments are:

Bits[31:1] Reserved, RES0.

EA, bit[0] If an event is implemented, this field is the event status flag. Valid values for the flag are:

0b0 An event requires attention.

0b1 There is no event requiring attention.

If no event is implemented, this field is RAZ.

Note
The status of the event is inverted in the register, and when debugging an implementation that does
not implement an event, debuggers interpret a value of zero as an event requiring attention, and poll
other registers to detect the status of the system.

Accessing EVENTSTAT

Default

RO

RES0

31 1 0

EA
B2-70 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
EVENTSTAT can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x4 0x4
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-71
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.9 RDBUFF, Read Buffer register

The RDBUFF register characteristics are:

Purpose

The purpose and behavior of RDBUFF is DATA LINK DEFINED:

JTAG-DP The Read Buffer is architecturally defined to provide a DP read operation that does not
have any side effects. This definition allows a debugger to insert a DP read of RDBUFF
at the end of a sequence of operations, to return the final AP Read Result and ACK
values.

SW-DP On an SW-DP, the Read Buffer presents data that was captured during the previous AP
read, enabling repeatedly returning the value without generating a new AP access.

Note
After reading the DP Read Buffer, its contents are no longer valid. The result of a second
read of the DP Read Buffer is UNKNOWN.

If the value is required from an AP register read, that read must be followed by one of:

• A second AP register access, with the appropriate AP selected as the current AP.

• A read of the DP Read Buffer.

The second access to either the AP or the DP stalls until the result of the original AP
read is available.

Usage Constraints

RDBUFF is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit read-only buffer.

Field descriptions

The RDBUFF bit assignments are:

Bits[31:0] DATA LINK DEFINED:

JTAG-DP RAZ/WI

SW-DP Data for previous AP read.

Default

RO

31 0

DATA LINK DEFINED
B2-72 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
Accessing RDBUFF

RDBUFF can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0xC x
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-73
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.10 RESEND, Read Resend register

The RESEND register characteristics are:

Purpose

Performing a read to RESEND does not capture new data from the AP, but returns the value that
was returned by the last AP read or DP RDBUFF read.

RESEND enables the debugger to recover read data from a corrupted SW-DP transfer without
having to re-issue the original read request, or generate a new access to the connected debug
memory system.

RESEND can be accessed multiple times, and always returns the same value until a new access is
made to an AP register or the DP RDBUFF register.

Usage Constraints

Arm recommends that debuggers only access RESEND when a failed read has been indicated by
the SW-DP, and at no other time. The reason for this is that, if an implementation cannot resend the
information, it is permitted to treat reads of RESEND as a protocol error.

RESEND is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit read-only DP architecture register.

The RESEND register is:

• A read-only register.

• Accessed by a read of offset 0x8 in the DP register map.

• DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.

SW-DP The value that was returned by the last AP read or DP RDBUFF read.

Field descriptions

The RESEND bit assignments are:

Bits[31:0] DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.

SW-DP Data for previous AP read.

Default

RO

31 0

DATA LINK DEFINED
B2-74 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
Accessing RESEND

RESEND can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x8 x
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-75
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.11 SELECT-SELECT1, AP Select registers

The SELECT-SELECT1 characteristics are:

Purpose

The SELECT-SELECT1 registers:

• Select an AP and the active register banks within that AP.

• Select the DP address bank.

Usage Constraints

SELECT-SELECT1 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit DP architecture registers.

Field descriptions

The SELECT-SELECT1 bit assignments are:

ADDR, SELECT1 bits[31:0] : SELECT bits[31:4]

Address output bits[63:4], formed by concatenating bits[31:0] of SELECT1 with bits[31:4] of
SELECT. The ADDR field selects a four-word bank of system locations to access. Bits[3:2] of the
address, that are used to select a specific register in a bank, are provided with APACC transactions.
Bits[1:0] are always 0b00.

After a powerup reset or an SWD line reset, the value of this field is UNKNOWN.

DPBANKSEL, bit[3:0]

DP address bank select.

Default

WO

31 4 3 0

DPBANKSEL

ADDR

31 0

ADDR

0x8SELECT

0x4,
DPBANKSEL=0x5

SELECT1
B2-76 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
The behavior of SELECT.DPBANKSEL depends on the DP version. In DPv3, the
SELECT.DPBANKSEL field controls which DP register is selected at addresses 0x0 and 0x4, and
Table B2-6 shows the permitted values of this field.

All other values of SELECT.DPBANKSEL are reserved. If the field is set to a reserved value,
accesses to DP register 0x0 or 0x4 are RES0.

After a powerup reset, this field is 0x0.

After an SWD line reset, this field must be reset to 0x0.

Note

Some earlier ADI revisions have described DPBANKSEL as a single-bit field called CTRSEL,
which is defined only for SW-DP.

Accessing SELECT-SELECT1

SELECT-SELECT1 can be accessed at the following addresses:

Table B2-6 DPBANKSEL DP register allocation in DPv3

DPBANKSEL DP register at address 0x0 DP register at address 0x4

0x0 DPIDR CTRL/STAT

0x1 DPIDR1 DLCR

0x2 BASEPTR0 TARGETID

0x3 BASEPTR1 DLPIDR

0x4 Reserved, RES0. EVENTSTAT

0x5 SELECT1

0x6-0xF Reserved, RES0.

Offset Aa

a. Bits[1:0] of the register address are always 0b00.

DPBANKSEL

SELECT 0x8 Not applicable

SELECT1 0x4 0x5
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-77
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.12 TARGETID, Target Identification register

The TARGETID register characteristics are:

Purpose

TARGETID provides information about the target when the host is connected to a single device.

Usage Constraints

TARGETID is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit read-only register.

Field Descriptions

The TARGETID bit assignments are:

TREVISION, bits[31:28]

Target revision.

TPARTNO, bits[27:12]

IMPLEMENTATION DEFINED. The value is assigned by the designer of the part. The value must be
unique to the part.

TDESIGNER, bits[11:1]

IMPLEMENTATION DEFINED.

This field indicates the designer of the part and not the implementer, except where the two are the
same.

Designers must insert their JEDEC-assigned code here.

Note

The Arm JEP106 value is not shown for the TDESIGNER field. Arm might design a DP containing
the TARGETID register, but typically, the designer of the part is another designer who creates a part
around the licensed Arm IP. The designer who creates the part is referenced in the TPARTNO field.

If the designer of the part is Arm, the value of this field is 0x23B.

To obtain a number, or to see the assignment of these codes, contact JEDEC at http://www.jedec.org.

A JEP106 code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit. For example,
Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

Default

RO

TDESIGNERTPARTNOTREVISION 1

31 28 27 12 11 1 0
B2-78 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
The encoding that is used in TARGETID is as follows:

• The JEP106 continuation code, TARGETID bits[11:8], is the number of times that 0x7F
appears before the final number.

• The JEP106 identification code, TARGETID bits[7:1], equals bits[6:0] of the final number
of the JEDEC code.

For example, for Arm Limited this field is the concatenation of 0x4, which represents the number of
times that 0x7F appears, and 0x3B, the Arm JEP106 code, resulting in a value of 0x23B.

Bit[0] RAO.

Accessing TARGETID

TARGETID can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x4 0x2
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-79
ID072524 Non-Confidential

B2 DP Reference Information
B2.2 DP register descriptions
B2.2.13 TARGETSEL, Target Selection register

The TARGETSEL register characteristics are:

Purpose

TARGETSEL selects the target device in an SWD multi-drop system.

On a write to TARGETSEL immediately following a line reset sequence, the target is selected if
both the following conditions are met:

• Bits[31:28] match bits[31:28] in the DLPIDR.

• Bits[27:0] match bits[27:0] in the TARGETID register.

Writing any other value deselects the target. Debug tools must write 0xFFFFFFFF to deselect all
targets. 0xFFFFFFFF is an invalid TARGETID value. All other invalid TARGETID values are
reserved.

During the response phase of a write to the TARGETSEL register, the target does not drive the line.
See Sticky flags and DP error responses on page B1-43 for more information.

Usage Constraints

TARGETSEL is DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.

SW-DP If SWD protocol version 2 is implemented, the register is implemented.

TARGETSEL is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit DP architecture register.

Field descriptions

For an SW-DP, the TARGETSEL bit assignments are:

TINSTANCE, bits[31:28]

IMPLEMENTATION DEFINED. The instance number for this device. See DLPIDR.

TPARTNO, bits[27:12]

IMPLEMENTATION DEFINED. The value that is assigned by the designer of the part. See TARGETID.

TDESIGNER, bits[11:1]

IMPLEMENTATION DEFINED. The 11-bit code that is formed from the JEDEC JEP106 continuation
code and identity code. See TARGETID.

Bit[0]

SBO.

SW-DP JTAG-DP

WO UNPREDICTABLE

TDESIGNERTPARTNO 1

31 28 27 12 11 1 0

TINSTANCE
B2-80 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.2 DP register descriptions
Accessing TARGETSEL

TARGETSEL can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0xC x
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-81
ID072524 Non-Confidential

B2 DP Reference Information
B2.3 System and debug power control behavior
B2.3 System and debug power control behavior

This section gives detailed information about system and debug power.

B2.3.1 The ADI power domains model

The ADI supports multiple power domains, which provide support for debug components that can be powered
down.

Three power domains are modeled:

Always-on power domain

Power domain that must be powered up for the debugger to connect to the device.

System power domain

Power domains that include system components.

Debug power domain

Power domain that includes the entire debug subsystem.

The system and debug power domains can be subdivided if necessary. However, to define a simple debug interface,
the device must be partitioned into system and debug power domains at the top level. Any finer-grained control is
outside the scope of this model.

In most situations, debuggers power up the complete SoC. However, if a debugger is investigating an energy
management issue, it might want to power up only the debug domain. To achieve this goal, SoC designers might
want to map the power controller into a bus segment that the ADI can access when only the debug power domain
is powered up.

When using an ADI, for the debug process to work correctly, systems must not remove power from the DP during
a debug session. If power is removed, the DP controller state is lost. However, the ADI is designed to permit the
rest of the ADI and the system to be powered down and debugged while maintaining power to the DP.

The DP registers reside in the always-on power domain, on the external interface side of the DP. Therefore, they can
always be driven, enabling powerup requests to be made to a system power controller. The power and reset control
bits are part of the DP CTRL/STAT register. See Debug reset control behavior on page B2-87 for more information
about the reset control bits in this register.

ADIv6 defines two pairs of power control signals:

• CDBGPWRUPREQ and CDBGPWRUPACK.

• CSYSPWRUPREQ and CSYSPWRUPACK.

Table B2-7 summarizes the programmers’ model for the power control signal pairs.

These signals are expected to provide requests to the system power and clock controller. The following sections
describe these signal pairs.

Table B2-7 Debug Port programmers’ model

Signal Programmers’ model

CDBGPWRUPREQ Bit[28] of the CTRL/STAT register

CDBGPWRUPACK Bit[29] of the CTRL/STAT register

CSYSPWRUPREQ Bit[30] of the CTRL/STAT register

CSYSPWRUPACK Bit[31] of the CTRL/STAT register
B2-82 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.3 System and debug power control behavior
CDBGPWRUPREQ and CDBGPWRUPACK

CDBGPWRUPREQ is the signal from the debug interface to the power controller. This signal requests the system
power controller to fully power up and ensure the clocks are available in the debug power domain.
CDBGPWRUPACK is the signal from the power controller to the debug interface. When CDBGPWRUPREQ is
asserted, the power controller powers up the debug power domain and then asserts CDBGPWRUPACK to
acknowledge that it has responded to the request.

It is IMPLEMENTATION DEFINED which components are in the debug power domain that is controlled by
CDBGPWRUPREQ. This domain might include all debug components in the system, or it might be limited to
exclude components that have extra levels of power control, for example. The CDBGPWRUPREQ signal indicates
that the debugger requires the debug resources of these components to be communicative. Communicative means
that the debugger can access at least enough registers of the debug resource for it to determine the state of the
resource. Whether the resource is active is IMPLEMENTATION DEFINED.The power and clock controller must power
up and run the clocks of as many domains as necessary to comply with this request from the debugger for the
resources to be communicative.

The power and clock controller must honor CDBGPWRUPREQ for as long as it is asserted. For example, if a
component in a debug power domain requests to be powered down, the request must be emulated for non-debug
logic within that power domain, including all components with a single shared domain.

If some debug resources of a component are not in the debug power domain, then at least the minimal debug
interface of the component must be powered up. If the following requirements are met, power can be removed from
the remainder of the component:

• There is some means to save and restore the state of the debug resources.

• The debugger can communicate with the debug resources when the remainder of the component is not
powered.

The means to save and restore the values that are held in these resources might include software solutions. If the
debug resources do lose their value when power is removed from the remainder of the component, then the debug
interface must include means for the debugger to discover that the programmed values have been lost.

CDBGPWRUPACK is the acknowledge signal for the CDBGPWRUPREQ request signal. CDBGPWRUPACK
must be asserted for as long as CDBGPWRUPREQ is asserted. See Powerup request and acknowledgment timing
on page B2-84.

CSYSPWRUPREQ and CSYSPWRUPACK

CSYSPWRUPREQ is the signal from the debug interface to the power controller. This signal requests the system
power controller to fully power up and ensure the clocks are available in the system power domain.
CSYSPWRUPACK is the signal from the power controller to the debug interface. When CSYSPWRUPREQ is
asserted, the power controller powers up the system power domain and then asserts CSYSPWRUPACK to
acknowledge that it has responded to the request.

It is IMPLEMENTATION DEFINED which components are in the debug power domain that is controlled by
CDBGPWRUPREQ. This domain might include all debug components in the system, or might be limited, for
example to exclude components that have extra levels of power control, such as processors that implement
independent Core Powerup Request controls.

The CSYSPWRUPREQ signal indicates that the debugger requires all debug resources of these components to be
active. Active means that the debug resource can perform its debug function. An active resource is also
communicative.

The power and clock controller must honor CSYSPWRUPREQ for as long as it is asserted.

CSYSPWRUPREQ has no effect on debug components that are controlled by CDBGPWRUPREQ, because those
components have no debug logic in the system power domain. However, for components where some debug
resources are in the system power domain that is controlled by CSYSPWRUPREQ, the request must be emulated
for non-debug logic within that power domain.

CSYSPWRUPACK is the acknowledge signal for the CSYSPWRUPREQ request signal. CSYSPWRUPACK
must be asserted for as long as CSYSPWRUPREQ is asserted. See Powerup request and acknowledgment timing
on page B2-84.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-83
ID072524 Non-Confidential

B2 DP Reference Information
B2.3 System and debug power control behavior
When CSYSPWRUPREQ is asserted by the debugger, CDBGPWRUPREQ must also be asserted.

B2.3.2 Power control requirements and operation

This section applies to both the system and the debug domain, and uses the following notation:

• CxxxPWRUPREQ refers to either CSYSPWRUPREQ or CDBGPWRUPREQ.

• CxxxPWRUPACK refers to either CSYSPWRUPACK or CDBGPWRUPACK.

All signals that are described in this section are active-high. Therefore, assert denotes taking the signal HIGH, and
deassert denotes taking the signal LOW.

The rules for the operation of powerup requests and acknowledgments are:

• The debugger must not set CTRL/STAT.CSYSPWRUPREQ to 0b1 and CTRL/STAT.CDBGPWRUPREQ to
0b0 at the same time. The response to this combination of requests is UNPREDICTABLE.

• To initiate powerup, the DP must assert CxxxPWRUPREQ.

— If the corresponding power domain is powered down or in a low-power retention state, the power
controller must power up the domain when it detects that CxxxPWRUPREQ is asserted. After the
domain is powered up, the controller must assert CxxxPWRUPACK.

— If the corresponding power domain is already powered up when the power controller detects that
CxxxPWRUPREQ is asserted, the controller must still respond by asserting CxxxPWRUPACK,
even though it does not affect the power domain.

• Arm strongly recommends that tools only initiate an AP transfer when CDBGPWRUPREQ and
CDBGPWRUPACK are asserted. If CDBGPWRUPREQ or CDBGPWRUPACK is LOW, any AP
transfer might generate a fault response.

• The DP requests removal of power to a domain by deasserting CxxxPWRUPREQ.

The power controller deasserts CxxxPWRUPACK when it has accepted the request to power down the
domain.

Note

The power controller deasserting CxxxPWRUPACK, does not indicate that the domain has been powered
down, it only indicates that the power controller has recognized and accepted the request to remove power.

• CxxxPWRUPACK must default to the LOW state, and only go HIGH on receipt of a CxxxPWRUPREQ
request.

• After detecting the deassertion of CxxxPWRUPREQ, the power controller must gracefully power down the
domain, unless removal of power from the domain would affect system operation. For example, the power
controller might maintain power to the domain if it has other requests to maintain power.

• After powerdown has been requested through the deassertion of CxxxPWRUPREQ, tools must wait until
CxxxPWRUPACK is LOW before making a new request for powerup.

This requirement ensures that the power control handshaking mechanism is not violated.

Figure B2-1 shows the timing of the power control signals.

Figure B2-1 Powerup request and acknowledgment timing

T1 T2 T3 T4

CxxxPWRUPREQ

CxxxPWRUPACK

Power state undefined
(Debug recommended off)

Power state undefined
(Debug recommended off)

Normal operation
(Powered up)
B2-84 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.3 System and debug power control behavior
Note

Arm strongly recommends that all AP transactions are initiated between T2 and T3 for CDBGPWRUPREQ and
CDBGPWRUPACK, as shown in Figure B2-1 on page B2-84.

B2.3.3 Emulation of powerdown

If a DP asserts CxxxPRWUPREQ for a domain, and the power controller receives a conflicting request for the
domain from another source, it must emulate the powerdown request for the domain by completing the handshake
process as expected, without actually removing power from the domain. This requirement enables debugging a
system with power domains that power up and down dynamically.

The following requests cause a conflict when issued by another source after the DP has asserted
CxxxPRWUPREQ:

• A powerdown request.

• A request to enter a low-power retention mode, with clocks disabled.

Emulation of powerdown is relevant to application debugging, when the application developer does not care
whether the core domain actually powers up and down because this aspect is controlled at the OS level.

B2.3.4 Emulation of power control

If the system to which a DP is connected does not support the ADIv6 power control model, the required signals must
be emulated or generated from other signals:

System power controllers that do not support the ADIv6 power control scheme

To ensure that the DP receives an immediate acknowledgment after initiating or removing a
powerup request, connect CxxxPRWUPACK to CxxxPRWUPREQ, as shown in Figure B2-2.

Figure B2-2 Emulation of powerup control

System power controllers that do not support separate power domains

If the debug power domain is part of the system power domain, CSYSPWRUPREQ and
CDBGPWRUPREQ can independently request powerup. To correctly emulate power control:

• To ensure that the DP receives an immediate acknowledgment of after initiating or removing
a system powerup request, connect CSYSPRWUPACK to CSYSPRWUPREQ.

• Generate appropriate CxxxPRWUPACK signals that ensure that the DP sees the correct
response when it asserts CxxxPRWUPREQ.

The CxxxPWRUPACK signals must be emulated as described. Setting
CTRL/STAT.CSYSPWRUPREQ to 0b1 and CTRL/STAT.CDBGPWRUPREQ to 0b0 in the
CTRL/STAT register leads to UNPREDICTABLE system behavior.

The connections are shown in Figure B2-3 on page B2-86.

Debug Port (DP)

CSYSPWRUPREQ

CSYSPWRUPACK

CDBGPWRUPREQ

CDBGPWRUPACK
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-85
ID072524 Non-Confidential

B2 DP Reference Information
B2.3 System and debug power control behavior
Figure B2-3 Signal generation for a single system and debug power domain

Debug Port (DP)

CSYSPWRUPREQ

CSYSPWRUPACK

CDBGPWRUPREQ

CDBGPWRUPACK

System power controller

CDBGPWRUPREQ

CDBGPWRUPACK
B2-86 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.4 Debug reset control behavior
B2.4 Debug reset control behavior

The DP CTRL/STAT register provides two fields for reset control of the debug domain:

CDBGRSTREQ, bit[26] Debug reset request.

CDBGRSTACK, bit[27] Debug reset acknowledge.

The associated signals, CDBGRSTREQ and CDBGRSTACK, provide a connection to a system reset controller.
The debug domain that is controlled by these signals covers some of the ADI, and the connection between the ADI
and the debug components, for example the debug bus.

The DP registers are in the always-on power domain on the external interface side of the DP. Therefore, the registers
can be driven at any time, to generate a reset request to the system reset controller.

Figure B2-4 shows the reset request and acknowledge timing.

Figure B2-4 Reset request and acknowledge timing

Note

The use of AMBA APB signal names in the examples does not indicate a requirement that a debug bus must be
implemented using an AMBA APB.

The steps in Figure B2-4 include:

1. At T1, the debugger writes 0b1 to CTRL/STAT.CDBGRSTREQ, which initiates the reset request.

The debug domain is reset between T1a and T1b, and the reset is complete by T2. This operation resets the
AP registers and other AP state.

Note

There is no reset of the DP registers and DP state. These registers are only reset by a powerup reset.

2. At T2, the system reset controller acknowledges that the reset of the debug domain has completed. The
CDBGRSTACK signal sets the CTRL/STAT.CDBGRSTACK bit to 0b1.

3. At T3, the debugger checks the DP CTRL/STAT register and finds that the reset has completed. Therefore,
it writes 0b0 to CTRL/STAT.CDBGRSTREQ, which removes the reset request signal.

4. At T4, the system reset controller recognizes that CDBGRSTREQ is no longer asserted, and deasserts
CDBGRSTACK.

Caution

If CDBGRSTREQ is removed before the reset controller asserts CDBGRSTACK, the behavior is
UNPREDICTABLE.

The AP debug components are also reset on powerup of the debug power domain.

A debug reset request has no effect on devices that are powered down when the request is issued.

T1 T2 T3 T4

CDBGRSTREQ

CDBGRSTACK

PRESETDBGn

T1a T1b
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-87
ID072524 Non-Confidential

B2 DP Reference Information
B2.4 Debug reset control behavior
B2.4.1 Emulation of debug reset request

If the debug reset control is not supported then:

• It is IMPLEMENTATION DEFINED whether CTRL/STAT.CDBGRSTREQ is read/write or RAZ/WI.

• CTRL/STAT.CDBGRSTACK is RAZ.

Note

Arm recommends tying CDBGRSTACK LOW so that the debugger can use a timeout mechanism to detect
whether debug reset is implemented.

B2.4.2 Limitations of CDBGRSTREQ and CDBGRSTACK

Debug reset control behavior on page B2-87 shows how these bits can drive the debug reset signal,
PRESETDBGn. In an actual system, there might be other reset signals that are associated with other debug buses.
For example, in an Arm CoreSight system, ATRESETn resets all registers in the AMBA Trace Bus domain.

Note

It is IMPLEMENTATION DEFINED which components are reset by CDBGRSTREQ. Figure B2-4 on page B2-87 is an
example only. Not only components that use PRESETDBGn are reset.

Because debug logic might be accessible by the system, an implementation might have corner cases if
CDBGRSTREQ is set at the same time as the system is using the debug logic. For example, the reset might occur
during a transaction, causing a system or software malfunction.

It is IMPLEMENTATION DEFINED whether CDBGRSTREQ can be used when debug power is off.

A system might include IMPLEMENTATION DEFINED conditions which prevent a debug reset from occurring, for
example when certain levels of debug are not permitted.

When a debug reset is prevented from occurring, CDBGRSTREQ is ignored and CDBGRSTACK is held LOW.

Caution

System-level use of debug components must be handled with caution. Arm recommends that such system-level
usage is not combined with a reset system that permits those debug components to be reset without the knowledge
of the system. Arm recommends that debuggers do not use debug reset requests unless necessary.
B2-88 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B2 DP Reference Information
B2.5 System reset control behavior
B2.5 System reset control behavior

The DP does not provide control bits for requesting a system reset. However, it is common for the physical interface
to the debugger to include a system reset pin, nSRST. This section describes the recommended behavior of the
system when a system reset is requested on the nSRST pin.

nSRST is an active-LOW pin that can be asserted and deasserted at any point in time, regardless of the current state
of the target system, to return the target system to a known state for booting and for starting a debug session.

While nSRST is asserted:

• The target system must be held in the known state.

• The debugger must be able to access the debug domain of the target system.

B2.5.1 Limitations of system reset control

The debugger must ensure that the DP is not accessing the system when asserting nSRST. When nSRST is asserted,
the debugger can access the debug domain.

The effect of nSRST on the debug domain is IMPLEMENTATION DEFINED.

For example, to safely return the target system to a known state, the debug domain might also require to be reset.
When nSRST is asserted, the entire system must be reset, including the debug domain. However, the debug domain
must be released from reset to allow the debugger access. Only the non-debug domain is held in reset while nSRST
is asserted.

Arm recommends that debuggers set CTRL/STAT.CDBGPWRUPREQ to 0b0 while nSRST is initially asserted.

Figure B2-5 shows a system reset timing example.

Figure B2-5 Example system reset timing

The steps in Figure B2-5 include:

1. At T1, the debugger writes 0b0 to CTRL/STAT.CDBGPWRUPREQ.

2. At T2, the system power controller acknowledges the request and CTRL/STAT.CDBGPWRUPACK is set to
0b0.

3. At T3, the debugger asserts nSRST. The debug domain and non-debug domain are reset at time T3a. The
debug domain reset is complete by time T3b.

4. At T4, the debugger writes 0b1 to CTRL/STAT.CDBGPWRUPREQ. This might occur before or after the
debug reset is complete.

5. At T5, the system power controller acknowledges this request and signals the debug domain reset is complete
by setting CTRL/STAT.CDBGPWRUPACK to 0b1. The debugger can now program the debug domain.

6. At T6, the debugger releases nSRST. The non-debug domain reset completes at time T6a.

CDBGPWRUPREQ
T1

CDBGPWRUPACK

nSRST

Debug reset

Non-debug reset

T2 T3 T3aT3b T4 T5 T6 T6a
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B2-89
ID072524 Non-Confidential

B2 DP Reference Information
B2.5 System reset control behavior
B2-90 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Chapter B3
The JTAG Debug Port

This chapter describes the implementation of the JTAG Debug Port (JTAG-DP), and in particular, the Debug Test
Access Port (DBGTAP), the Debug Test Access Port State Machine (DBGTAPSM), and scan chains.

It is only relevant to ADI implementations that use a JTAG Debug Port. In this case, the JTAG-DP provides the
external connection to the ADI, and all interface accesses are made using the scan chains, which are driven by the
DBGTAPSM.

This chapter contains the following sections:

• The scan chain interface on page B3-93.

• IR scan chain and IR instructions on page B3-96.

• DR scan chain and DR instructions on page B3-99.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-91
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.1 About the JTAG-DP
B3.1 About the JTAG-DP

The JTAG-DP is based on the IEEE 1149.1 Standard for Test Access Port and Boundary Scan Architecture, widely
referred to as JTAG. To emphasize that the JTAG-DP is intended for accessing debug components, the naming
convention that is used in this document differs from the IEEE 1149.1 naming convention by adding the prefix DBG,
as shown in Table B3-1.

The signal naming conventions of IEEE 1149.1 are modified in a similar way, for example the IEEE 1149.1 TDI
signal is named DBGTDI on a JTAG Debug Port. See Physical connection to the JTAG-DP on page B3-93 for the
complete list of the JTAG-DP signal names.

ADIv6 only permits DPs that implement DPv3 or later, and use JTAG DP Protocol version 1. JTAG DP Protocol
version 1 introduces the following changes to earlier versions:

• DPIDR is valid for all DPv3 JTAG-DP implementations. DLPIDR.PROTVSN indicates the JTAG-DP
protocol version. For details, see DLPIDR, Data Link Protocol Identification Register on page B2-64.

• The response to DPACC and APACC accesses has changed to provide separate OK and FAULT responses.
For details, see OK or FAULT response to a DPACC or APACC access on page B3-103.

• The Overrun detection behavior is modified to align with the separated OK and FAULT responses. For
details, see Sticky overrun behavior on DPACC and APACC accesses on page B3-105.

• The JTAG-DP protocol version must be indicated by using a unique IDCODE value, to allow a debugger to
determine the JTAG-DP protocol version. For details, see IDCODE, the JTAG TAP ID register on
page B3-110.

The JTAG DP Protocol that was used in ADI implementations of ADIv5 or earlier is referred to as JTAG DP
Protocol version 0.

Table B3-1 Comparison of IEEE 1149.1 and JTAG-DP naming

IEEE 1149.1 name JTAG-DP name JTAG-DP description

TAP DBGTAP Debug Test Access Port.

TAPSM DBGTAPSM Debug Test Access Port State Machine.
B3-92 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.2 The scan chain interface
B3.2 The scan chain interface

When an ADI implementation has a JTAG-DP, the wire-level interface accesses the APACC scan chain to access
debug resources in the system being debugged, or the DPACC scan chain to access information internal to the DP.

B3.2.1 DP elements

The DP requires the following elements to support JTAG scan chains:

• A DBGTAPSM.

• An Instruction Register (IR) that selects and controls the available scan chains.

• Various Data Registers (DRs) that hold the information that is exposed through the available scan chains and
interface to:

— The DP registers.

— The debug registers in the device or debug component being accessed through the ADI.

Figure B3-1 shows how the scan chains provide access to the different levels of the ADI architecture. For more
details, see Figure A1-3 on page A1-30.

Figure B3-1 JTAG-DP scan chain access to the different levels of the ADI

B3.2.2 Physical connection to the JTAG-DP

The physical connection to the JTAG-DP closely follows the JTAG model. Table B3-2 lists the recommended
signals for the JTAG-DP physical connection alongside their equivalent JTAG signal names.

JTAG-DP AP
AP Access

Debug
resources in
the system

being
debugged

Resource-specific
transport

DP

AP

DBGTDI
DBGTDO
DBGTMS

TCK
DBGTRSTn

Result

APACC

Scan
chains

Resource-specific
access Debug

resources in
the system

being
debugged

Physical connection perspective

Scan chains perspective

DPACC

ABORT
IDCODE

DP Access

AP Access

Table B3-2 JTAG-DP signal connections

JTAG-DP
signal name

JTAG equivalent
signal name

Direction Required? Description

DBGTDI TDI Input Yes Debug Data In

DBGTDO TDO Output Yes Debug Data Out

TCK TCK Input Yes Debug Clock

DBGTMS TMS Input Yes Debug Mode Select

DBGTRSTn TRST Input Optional Debug TAP Reset
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-93
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.2 The scan chain interface
B3.2.3 The Debug TAP State Machine (DBGTAPSM)

The DBGTAPSM controls the operation of a JTAG-DP. In particular, it controls the scan chain interface that
provides the external physical interface to the ADI through the JTAG-DP. It is based closely on the JTAG TAP State
Machine. For more information, see IEEE 1149.1-1990 IEEE Standard Test Access Port and Boundary Scan
Architecture.

Figure B3-2 shows the state diagram for the DBGTAPSM.

Figure B3-2 State diagram for the DBGTAPSM

The DBGTAPSM uses the following process:

• The DBGTDI signal input is the start of the scan chain and the DBGTDO signal output is the end of the scan
chain.

• When the DBGTAPSM goes through the Capture-IR state:

— When using a 4-bit IR, 0b0001 is transferred to the IR scan chain.

— When using an 8-bit IR, 0b00000001 is transferred to the IR scan chain.

— The IR scan chain is connected between DBGTDI and DBGTDO.

DBGTMS=1

DBGTMS=0

DBGTMS=1 DBGTMS=1

DBGTMS=1 DBGTMS=0 DBGTMS=1 DBGTMS=0

DBGTMS=1

DBGTMS=1

DBGTMS=0

Run-Test/Idle

Test-Logic-
Reset

Select-
DR-Scan

Select-
IR-Scan

DBGTMS=1

Capture-DR

DBGTMS=0

DBGTMS=0

DBGTMS=0

Capture-IR

DBGTMS=0

Shift-IR

Exit1-IR

DBGTMS=1

Pause-IR

DBGTMS=0

Exit2-IR

DBGTMS=1

Update-IR

DBGTMS=1

DBGTMS=0

Shift-DR

Exit1-DR

DBGTMS=1

Pause-DR

DBGTMS=0

Exit2-DR

DBGTMS=1

Update-DR

DBGTMS=1

DBGTMS=0

DBGTMS=1

DBGTMS=0 DBGTMS=0

DBGTMS=1

DBGTMS=0

Based on IEEE Std 1149.1-1990. Copyright © 2006 IEEE. All rights reserved.

DBGTMS=0

Note that Arm signal names differ from those used in the IEEE diagram.
B3-94 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.2 The scan chain interface
• While the DBGTAPSM is in the Shift-IR state, the IR scan chain advances one bit for each rising edge of
TCK. On the first tick:

— The LSB of the IR scan chain is output on DBGTDO.

— Bit[1] of the IR scan chain is transferred to bit[0].

— Bit[2] of the IR scan chain is transferred to bit[1].

— Similarly, for every other bit n of the IR scan chain, bit[n] of the scan chain is transferred to bit[n-1].

— The value on DBGTDI is transferred to the MSB of the IR scan chain.

• When the DBGTAPSM goes through the Update-IR state, the value that is scanned into the IR scan chain is
transferred into the Instruction Register.

• The value that is held in the Instruction Register selects a Data Register, and an associated DR scan chain.
When the DBGTAPSM goes through the Capture-DR state, the value of the selected DR is transferred to the
selected DR scan chain, which is connected between DBGTDI and DBGTDO.

This data is then shifted while the DBGTAPSM is in the Shift-DR state, in the same manner as the IR shift
in the Shift-IR state.

• When the DBGTAPSM goes through the Update-DR state, the value that is scanned into the DR scan chain
is transferred into the selected Data Register.

• When the DBGTAPSM is in the Run-Test/Idle state, no special actions occur. Debuggers can use this state
as a true resting state.

Note

This behavior is different from the behavior of previous versions of the ADI that were based on the IEEE
JTAG standard. From ADIv5, there is no requirement for debuggers to gate TCK to obtain a true rest state.

To ensure that the transfer can be clocked through the JTAG-DP, after going through the Update-DR state the host
must do one of the following:

• Start a new JTAG scan operation.

• Put the DBGTAPSM in to Run-Test/Idle, and remain in Run-Test/Idle until a new scan can be started.

• If the host is driving the JTAG clock, continue to clock the JTAG interface for at least eight cycles in
Run-Test/Idle. After completing this sequence, the host can stop the clock.

The behavior of the IR and DR scan chains is described in more detail in IR scan chain and IR instructions on
page B3-96 and DR scan chain and DR instructions on page B3-99.

The DBGTRSTn signal only resets the DBGTAP state machine and Instruction Register. DBGTRSTn
asynchronously takes the DBGTAPSM to the Test-Logic-Reset state. As shown in Figure B3-2 on page B3-94, the
Test-Logic-Reset state can also be entered synchronously from any state by a sequence of five TCK cycles with
DBGTMS HIGH. However, depending on the initial state of the DBGTAPSM, this transition might take the state
machine through one of the Update states, with the resulting side effects.

The reset behavior of the registers is as follows:

• The DP registers are only reset on a powerup reset.

• The AP registers are reset on a powerup reset, and also by the Debug Reset Control described in Debug reset
control behavior on page B2-87.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-95
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.3 IR scan chain and IR instructions
B3.3 IR scan chain and IR instructions

This section describes the JTAG-DP IR, accessed through the IR scan chain.

B3.3.1 Required IR instructions

As described in The Debug TAP State Machine (DBGTAPSM) on page B3-94, the JTAG-DP transfers an instruction
into the IR. This instruction determines the Data Register that the JTAG-DP Data Register maps onto, as described
in DR scan chain and DR instructions on page B3-99.

The width of the IR is IMPLEMENTATION DEFINED, and can be 4 or 8 bits.

The standard IR instructions, which are required for all JTAG-DP implementations, are listed in Table B3-3, and
recommended IMPLEMENTATION DEFINED extensions to this instruction set are described in IMPLEMENTATION
DEFINED extensions to the IR instruction set on page B3-97.

Unused IR instruction values are reserved and select the BYPASS register.

Table B3-3 Standard IR instructions

4-bit IR
instruction
value

8-bit IR
instruction
value

Data
register

DR scan
length

Notes

0b0xxx 0b0xxxxxxx - - IMPLEMENTATION DEFINED extensions to the IR
instruction set on page B3-97.

- 0b10000000-

0b11110111

- - Reserved.

0b1000 0b11111000 ABORT 35 -

0b1001 0b11111001 - - Reserved.

0b1010 0b11111010 DPACC 35 See DPACC and APACC, JTAG-DP DP and AP Access
registers on page B3-102.

0b1011 0b11111011 APACC 35

0b110x 0b1111110x - - Reserved.

0b1110 0b11111110 IDCODE 32 -

0b1111 0b11111111 BYPASS 1 Required by JTAG specification.
B3-96 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.3 IR scan chain and IR instructions
B3.3.2 IMPLEMENTATION DEFINED extensions to the IR instruction set

The 4-bit IR instructions 0b0000 to 0b0111 and the 8-bit instructions 0b00000000 to 0b01111111 are reserved for
IMPLEMENTATION DEFINED extensions to the ADI.

These instructions can be used for accessing a boundary scan register, for IEEE 1149.1 compliance, as shown in
Table B3-4. All these instructions select the boundary scan data register.

Note

This extension describes only boundary scan instructions that are described by IEEE 1149.1-2001. Later editions of
IEEE 1149.1 define additional instructions.

Arm recommends that:

• Separate JTAG TAPs are used for boundary scan and debug.

• The instructions that are listed in Table B3-4 are not implemented.

If the IR register is set to an IR instruction value that is not implemented, or reserved, then the BYPASS register is
selected.

If a boundary scan implementation is required, it must implement the instructions that are required by IEEE 1149.1.
The other IR instruction values that are listed in Table B3-4 are reserved encodings that must be used if that function
is implemented in the boundary scan. If implemented, these instructions must behave as required by the
IEEE 1149.1 specification. If not implemented, they select the BYPASS register.

Note

The original revision of the IEEE 1149.1 specification, 1149.1-1990, requires that instruction {000..0} is EXTEST.
However, in more recent editions this requirement is removed and the IEEE 1149.1 specification recommends that
instruction {000..0} is reserved. See the IEEE specification for more details.

The IEEE 1149.1 specification also defines the IDCODE and BYPASS instructions, which are included in
Table B3-3 on page B3-96.

B3.3.3 IR, JTAG-DP Instruction Register

The IR characters are:

Purpose

Holds the current JTAG-DP Controller instruction.

Configurations

IR is mandatory in the IEEE 1149.1 standard.

Attributes

Table B3-4 Recommended IMPLEMENTATION DEFINED IR instructions for IEEE 1149.1-compliance

4-bit IR instruction
value

8-bit IR instruction
value

Instruction Required by IEEE 1149.1?

0b0000 0b00000000 EXTEST See note in main text.

0b0001 0b00000001 SAMPLE Yes

0b0010 0b00000010 PRELOAD Yes

0b0100 0b00000100 INTEST No

0b0101 0b00000101 CLAMP No

0b0110 0b00000110 HIGHZ No
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-97
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.3 IR scan chain and IR instructions
IMPLEMENTATION DEFINED, a 4-bit or 8-bit register.

Operation

The operation of the IR register is shown in the following figure:

When in Shift-IR state, the shift section of the IR is selected as the serial path between DBGTDI and DBGTDO.
At the Capture-IR state, the binary value 0b0001 for 4-bit instructions, or 0b00000001 for 8-bit instructions, is loaded
into this shift section. This value is shifted out, least significant bit first, during Shift-IR, while a new instruction is
shifted in, least significant bit first:

• At the Update-IR state, the value in the shift section is loaded into the IR and becomes the current instruction.

• In the Test-Logic-Reset state, IDCODE becomes the current instruction.

0b0001

DBGTDI DBGTDOData[3:0]

IR[3:0]

3 0

0b00000001

DBGTDI DBGTDOData[7:0]

IR[7:0]

7 0

4-bit IR length 8-bit IR length
B3-98 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
B3.4 DR scan chain and DR instructions

The DR scan chain is associated with the DR registers:

• The BYPASS and IDCODE registers, as defined by the IEEE 1149.1 standard.

• The DPACC and APACC Access registers, xPACC.

• An ABORT register, to abort a transaction.

This section describes each of these registers.

The instruction in the IR register determines which of these scan chains is connected to the DBGTDI and DBGTDO
signals, see IR scan chain and IR instructions on page B3-96.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-99
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
B3.4.1 ABORT, JTAG-DP Abort register

The ABORT characteristics are:

Purpose

Access the ABORT register in the DP, to force an AP abort.

This implementation is the JTAG-DP implementation of the ABORT register.

Attributes

A 35-bit register.

Operation

The operation of the ABORT register is shown in the following figure:

When the ABORT instruction is the current instruction in the IR, the serial path between DBGTDI and DBGTDO
is connected to a 35-bit scan chain that accesses the ABORT register.

In DPv0, the effect of writing a value other than 0x00000001 to the ABORT register is UNPREDICTABLE. This means
that, in DPv0, the debugger must scan the value 0x000000008 into this scan chain. For more information, see ABORT,
Abort register on page B2-53.

B3.4.2 BYPASS, JTAG-DP Bypass register

The BYPASS characteristics are:

Purpose

Bypasses the device, by providing a direct path between DBGTDI and DBGTDO.

Configurations

BYPASS is mandatory in the IEEE 1149.1 standard.

Attributes A 1-bit register.

Operation

The operation of the BYPASS register is shown in the following figure:

When the BYPASS instruction is the current instruction in the IR:

• In the Shift-DR state, data is transferred from DBGTDI to DBGTDO with a delay of one TCK cycle.

0 0 0

DBGTDI DBGTDO

ABORT[31:0]

RnW
A[3:2]Abort Register

0

UNKNOWN

34

031

0b0

DBGTDI DBGTDOBypass
B3-100 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
• In the Capture-DR state, a logic 0 is loaded into this register.

• In the Update-DR state, nothing happens. The shifted-in data is ignored.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-101
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
B3.4.3 DPACC and APACC, JTAG-DP DP and AP Access registers

The DPACC and APACC scan chains have the same format.

Purpose

DPACC and APACC are used to read from and write to DP or AP registers.

The DPACC scan chain uses A[3:2], SELECT.DPBANKSEL and RnW to determine the address of
the DP register to be accessed, as summarized in Table B3-5. For detailed information about
addressing JTAG-DP registers, see DP architecture versions on page B2-50.

Note

The DP register ABORT is accessed through the ABORT instruction.

• MEM-AP programmers’ model on page C2-198 for details of accessing MEM-AP registers.

• JTAG-AP programmers’ model on page C3-259 for details of accessing JTAG-AP registers.

Attributes

Two 35-bit registers.

Table B3-5 JTAG-DP Register access summary.

Register Access

Address
(Aa,SELECT.DPBANKSEL)

a. Bits [1:0] of the address are always 0b00.

DPv0 DPv1 DPv2 DPv3

BASEPTR0 RO - - - 0x0, 0x2

BASEPTR1 RO - - - 0x0, 0x3

CTRL/STAT RW 0x4, - 0x4, 0x0 0x4, 0x0 0x4, 0x0

DLCR RW - 0x4, 0x1 0x4, 0x1 0x4, 0x1

DLPIDR RO - - 0x4, 0x3 0x4, 0x3

DPIDR RO - 0x0, x 0x0, x 0x0, 0x0

DPIDR1 RO - - - 0x0, 0x1

EVENTSTAT RO - - 0x4, 0x4 0x4, 0x4

RDBUFF RO 0xC, - 0xC, x 0xC, x 0xC, x

SELECT WOb

b. RW for DPv0

0x8, - 0x8, x 0x8, x 0x8, x

SELECT1 WOb - - - 0x4, 0x5

TARGETID RO - - 0x4, 0x2 0x4, 0x2
B3-102 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
Operation

The operation of the DPACC and APACC registers is shown in the following figure:

When the DPACC or APACC instruction is the current instruction in the IR, the shift section of the DP Access
register or AP Access register is selected as the serial path between DBGTDI and DBGTDO:

• In the Capture-DR state, the result of the previous transaction, if any, is returned, together with a 3-bit ACK
response. The ACK responses that are implemented for each JTAG DP Protocol version are summarized in
Table B3-6.

All other ACK encodings are reserved.

This specification only describes responses that are defined for JTAG Protocol version 1. For details about
JTAG DP Protocol version 0 implementations, see the ADIv5 edition of the architecture specification.

• In the Shift-DR state, this data is shifted out, least significant bit first. The first 3 bits of data that are shifted
out are ACK[2:0].

As the returned data is shifted out to DBGTDO, new data is shifted in from DBGTDI, as described in OK
or FAULT response to a DPACC or APACC access.

• Operation in the Update-DR depends on whether the ACK[2:0] response was OK/FAULT, OK, FAULT or
WAIT, as described in:

— OK or FAULT response to a DPACC or APACC access.

— WAIT response to a DPACC or APACC access on page B3-104.

OK or FAULT response to a DPACC or APACC access

If the response indicated by ACK[2:0] is OK or FAULT, the previous transaction has completed. Additional
information for FAULT responses can be obtained from the DP CTRL/STAT register.

Table B3-6 DPACC and APACC ACK responses

JTAG DP
Protocol
Version

ACK[2:0]
Encoding

Response See:

0 0b001 WAIT WAIT response to a DPACC or APACC access on
page B3-104

0 0b010 OK/FAULT OK or FAULT response to a DPACC or APACC access

1 0b001 WAIT WAIT response to a DPACC or APACC access on
page B3-104

1 0b010 FAULT OK or FAULT response to a DPACC or APACC access

1 0b100 OK OK or FAULT response to a DPACC or APACC access

Data[2:1]

ACK[2:0]

Data[34:3]

0

ReadResult[31:0]

DBGTDO

3 2

A[3:2] RnWDATAIN[31:0]

Data[0]

DBGTDI

34
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-103
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
Depending on the transaction type and the response code, ReadResult[31:0] must be handled as follows:

• If the previous instruction in the IR was not one of DPACC, APACC or BYPASS, the captured
ReadResult[31:0] is UNKNOWN, and if Data[34:3] is shifted out it must be discarded.

• If the previous transaction was a read that was followed by an OK response, the captured ReadResult[31:0]
is the requested register value. This result is shifted out as Data[34:3].

• If the previous transaction was a write, or a read that was followed by a FAULT response, the captured
ReadResult[31:0] is UNKNOWN, and if Data[34:3] is shifted out it must be discarded.

An OK or FAULT response is followed by an Update-DR operation to fulfill the read or write request that is formed
by the values that were shifted into the scan chain:

• DBGTDI and DBGTDO connect to the scan chain corresponding to the current IR instruction, and the
specified address is used to select a register.

• For write requests, corresponding to RnW having a value of 0b0, the value in DATAIN[31:0] is written to the
selected register.

• For read requests, corresponding to RnW having a value of 0b1, the value in DATAIN[31:0] is IGNORED.
Another scan is required to obtain the read data.

Register accesses can be pipelined, because a single DPACC or APACC scan can return the result of the previous
read operation at the same time as shifting in a request for another register access. At the end of a sequence of
pipelined register reads, you can read the DP RDBUFF register to shift out the result of the final register read.

Reading the DP RDBUFF register has no effect on the operation of the DBGTAPSM. For details about returning
the result from a previous DPACC or APACC scan, see section Target response summary on page B3-105.

If the current IR instruction is APACC, an AP access is requested:

• If any sticky flag in the DP CTRL/STAT register is 1, the transaction is discarded. The next scan returns a
FAULT response. For more information, see Sticky flags and DP error responses on page B1-43.

• If pushed-compare or pushed-verify operations are enabled, the scanned-in value of RnW must be 0b0,
otherwise behavior is UNPREDICTABLE. On Update-DR, a read request is issued, and the returned value is
compared against DATAIN[31:0]. The CTRL/STAT.STICKYCMP flag is updated based on this comparison.
For more information, see Pushed-compare and pushed-verify operations on page B1-46.

Pushed operations are enabled using the CTRL/STAT.TRNMODE field.

• The AP access does not complete until the AP signals it as completed. For example, if a MEM-AP is
accessed, the AP access might cause an access to a memory system connected to the MEM-AP. In this case,
the AP access does not complete until the memory system signals to the MEM-AP that the memory access
has completed.

WAIT response to a DPACC or APACC access

A WAIT response indicates that the previous transaction has not completed. Normally, after receiving a WAIT
response the host retries the DPACC or APACC access.

Note

The previous transaction might be either a DP or an AP access. DP accesses are stalled, by returning WAIT, until
any previous AP transaction has completed.

Normally, if software detects a WAIT response, it retries the same transfer, which enables the protocol to process
data as quickly as possible. However, in case an abort mechanism is implemented, if the software has retried a
transfer several times, and has waited long enough for a slow interconnect and memory system to respond, it might
write to the ABORT register to cancel the operation. This action signals that the active AP must terminate the
transfer that it is attempting, to permit access to other parts of the debug system. An AP might not be able to
terminate a transfer on its SoC interface. However, on receiving an abort request, the AP must free its interface to
the DP.
B3-104 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
No request is generated at the Update-DR state, and the shifted-in data is discarded. The captured value of
ReadResult[31:0] is UNKNOWN.

Sticky overrun behavior on DPACC and APACC accesses

The Sticky Overrun flag, CTRL/STAT.STICKYORUN is set to 0b1 if the response to any transaction is other than
OK. If the Sticky Overrun flag is set:

• At the Capture-DR state, the response to a transaction is WAIT until the previous AP transaction has
completed. As long as the previous transaction is not completed, subsequent scans also receive a WAIT
response.

• Once the AP transaction has completed, the response is FAULT. Subsequent APACC transactions respond
with FAULT because the Sticky Overrun flag is set. Subsequent DPACC transactions, however, respond with
OK, in particular to be able to access the CTRL/STAT register to confirm the Sticky Overrun flag status, and
to clear the flag to 0b0 by writing 0b1 to CTRL/STAT.STICKYORUN, after gathering any required
information about the overrun condition.

For more information, see Sticky flags and DP error responses on page B1-43.

Minimum response times

As explained in OK or FAULT response to a DPACC or APACC access on page B3-103, a DP or AP register access
is initiated at the Update-DR state of one DPACC or APACC access, and the result of the access is returned at the
Capture-DR state of the following DPACC or APACC access. If the requested register access has not completed,
however, the second access generates a WAIT response.

The timing between the Update-DR state and the Capture-DR state is defined in terms of TCK cycles. Referring to
Figure B3-2 on page B3-94, there are two paths from the Update-DR state, where the register access is initiated, to
the Capture-DR state, where the response is captured:

• A direct path through Select-DR-Scan.

• A path through Run-Test/Idle and Select-DR-Scan.

If the second path is followed, the state machine can spend a variable number of TCK cycles in the Run-Test/Idle
state, which in turn varies the number of TCK cycles between the Update-DR and Capture-DR states.

A JTAG-DP implementation might impose an IMPLEMENTATION DEFINED lower limit on the number of TCK cycles
between the Update-DR and Capture-DR states, and always generate an immediate WAIT response if Capture-DR
is entered before this limit has expired. Although any debugger must be able to recover successfully from any WAIT
response, Arm recommends that debuggers must be able to adapt to any IMPLEMENTATION DEFINED limit.

Note

Accessing AP registers or debug resources in connected device through an AP can be subjected to other variable
response delays in the system. A debugger that can adapt to these delays and avoid wasting WAIT scans operates
more efficiently and provides higher maximum data throughput.

Target response summary

As described in OK or FAULT response to a DPACC or APACC access on page B3-103, a DP or AP register access
is initiated at the Update-DR state of one DPACC or APACC access, and the result of the access is returned at the
Capture-DR state of the following DPACC or APACC access. The target responses, at the Capture-DR state, for
every possible DPACC and APACC access in the previous scan, are summarized in:

• Table B3-7 on page B3-106, for cases where the previous scan was a DPACC access.

• Table B3-8 on page B3-108, for cases where the previous scan was an APACC access.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-105
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
Note

The target responses that are shown in Table B3-7 are independent of the operation being performed in the current
DPACC or APACC scan. In this table, Read result is the data that is shifted out as Data[34:3], and ACK is decoded
from the data that is shifted out as Data[2:0].

Table B3-7 JTAG-DP target response summary, when previous scana was a DPACC access

Previous scana,
at Update-DR state

Current scan,
at Capture-DR state

Response

Access A[3:2]b DPBANKSEL Sticky?c APACC Stated ACK Notes

X 0bXX X X Busy WAIT If the Overrun Detect flag
CTRL/STAT.ORUNDETECT is set to 0b1,
this access-and-response sequence causes
the Sticky Overrun flag
CTRL/STAT.STICKYORUN to be set to
0b1.

The value that is returned is UNKNOWN.

See also CTRL/STAT, Control/Status
register on page B2-57.

R 0b00 0x0 X Not Busy OK Returns the value of DPIDR.

0x1 Returns the value of DPIDR1.

0x2 Returns the value of BASEPTR0 on
page B2-55.

0x3 Returns the value of BASEPTR1 on
page B2-55.

Other Returns RES0.

0b01 0x0 Returns the value of CTRL/STAT.

0x1 Returns RES0.

0x2 Returns RES0.

0x3 Returns the value of DLPIDR.

0x4 Returns the value of EVENTSTAT.

Other Returns RES0.

0b10 X Returns RES0.

0b11 X Returns RDBUFF value, always zero.
B3-106 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
W 0b00 X X Not Busy OK The result depends on the DP version:

DPv2 Write is ignored, returns
RES0.

DPv0, DPv1 Behavior is
UNPREDICTABLE.

0b01 0x0 Value has been written to CTRL/STAT.

0x5 Value has been written to SELECT1 on
page B2-76.

Other Write is ignored, returns RES0.

0b10 X Value has been written to SELECT on
page B2-76.

0b11 X Writes to RDBUFF are ignored.

a. The previous scan is the most recent scan for which the ACK response at the Capture-DR state was OK or FAULT. Updates that are made
following a WAIT response are discarded.

b. A[3:2] in the DPACC access.

c. The Sticky? column indicates whether any Sticky flag was set to 0b1 in the DP CTRL/STAT register.

d. The state of the APACC transaction when the current scan reaches the Capture-DR state, or the response to the APACC at that time.

Table B3-7 JTAG-DP target response summary, when previous scana was a DPACC access (continued)

Previous scana,
at Update-DR state

Current scan,
at Capture-DR state

Response

Access A[3:2]b DPBANKSEL Sticky?c APACC Stated ACK Notes
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-107
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
If there has been no previous DPACC or APACC scan, or if the previous scan was an APACC transaction which
was discarded due to a fault, the current scan behaves as follows, provided the APACC state is Not Busy:

• The value that is returned is UNKNOWN.

• If any Sticky flags are set to 0b1, the ACK response is FAULT.

• If no Sticky flags are set to 0b1, the ACK response is OK.

Table B3-8 JTAG-DP target response summary, when previous scana was an APACC access

Previous scana,
at Update-DR
state

Current scan, at
Capture-DR state

Response

Access A[3:2]b Sticky?c AP Stated ACK Notes

X X X Busy WAIT If the Overrun Detect flag
CTRL/STAT.ORUNDETECT is 0b1, this
access and response sequence causes the
Sticky Overrun flag
CTRL/STAT.STICKYORUN to be set to 0b1.
See CTRL/STAT, Control/Status register on
page B2-57.

R X No Not busy OK If pushed-verify or pushed-compare is
implemented and enabled, the behavior is
UNPREDICTABLE and the value returned in the
current scan is UNKNOWN.

Otherwise, the return value is the APACC
register that was addressed on the previous
scan.

W X No Not busy OK If pushed-verify or pushed-compare is
implemented and enabled, the previous
transaction performed the required pushed
operation, that might have set the Sticky
Compare flag CTRL/STAT.STICKYCMP to
0b1.

Otherwise, the data that is captured at the
previous scan has been written to the APACC
register requested.

The value that is returned in the current scan
is UNKNOWN.

X X Yes Not busy FAULT If CTRL/STAT.ERRMODE is 0b1,
CTRL/STAT.STICKYERR is cleared to 0b0
at Update-DR of the current scan.

If the current scan is a DPACC transaction,
the transaction has been accepted.

If the current scan is an APACC transaction,
the transaction has been discarded.

The value that is returned in the current scan
is UNKNOWN.

a. The previous scan is the most recent scan for which the ACK response at the Capture-DR state was OK or
FAULT. Updates that are made following a WAIT response are discarded.

b. A[3:2] in the APACC access.

c. The Sticky? column indicates whether any Sticky flag was set to 0b1 in the DP CTRL/STAT register.

d. The state of the APACC transaction when the current scan reaches the Capture-DR state.
B3-108 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
For a JTAG-DP, if the IR is changed to any instruction other than DPACC, APACC, or BYPASS, the DP behaves
as if there has been no previous APACC or DPACC scan.

Host response summary

The ACK column, for the Current scan, at Capture-DR state section of Table B3-7 on page B3-106 and Table B3-8
on page B3-108, shows the responses that the host might receive after initiating a DPACC or APACC access.
Table B3-9 indicates the normal action of a host in response to each of these ACKs.

Table B3-9 Summary of JTAG-DP host responses

Access
type

ACK
from target

Suggested host action in response to ACK

Read OK Capture read data.

Write OK No action required.

Read or Write WAIT Repeat the same access until either an OK or FAULT ACK is received or the
wait timeout is reached.

If implemented, the host can activate the abort mechanism to enable access
to the AP. For details, see ABORT, JTAG-DP Abort register.

Read or Write invalid ACK Assume that a target or line error has occurred and treat as a fatal error.

Read FAULT The read data that was returned is not valid:

• The read data should be discarded.

• The source of the FAULT response should be investigated and
cleared.

• If necessary, the transaction should be repeated.

Write FAULT The write transaction has failed:

• The source of the FAULT response should be investigated and
cleared.

• If necessary, the transaction should be repeated.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-109
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
B3.4.4 IDCODE, the JTAG TAP ID register

The IDCODE characteristics are:

Purpose

JTAG-DP TAP identification. The IDCODE value enables a debugger to identify the Debug Port to
which it is connected. JTAG-DP implementations have different IDCODE values, so that a
debugger can distinguish between them.

When the IDCODE instruction is the current instruction in the IR, the shift section of the Device ID
Code register is selected as the serial path between DBGTDI and DBGTDO:

• In the Capture-DR state, the 32-bit device ID code is loaded into this shift section.

• In the Shift-DR state, this data is shifted out, least significant bit first.

• Nothing happens at the Update-DR state. The shifted-in data is ignored.

Attributes

A 32-bit register.

Field Descriptions

The IDCODE bit assignments and operating mode are:

VERSION, bits[31:28]

Version code. The meaning of this field is IMPLEMENTATION DEFINED.

PARTNO, bits[27:12]

Part Number for the DP TAP. This value is provided by the designer of the Debug Port TAP and
must not be changed.

DESIGNER, bits[11:1]

The Designer ID is an 11-bit JEDEC code that identifies the designer of the JTAG-DP TAP. It is
formed from the JEDEC JEP106 continuation code and identity code as shown in Table B3-10.

JEDEC codes are assigned by the JEDEC Solid State Technology Association, see JEP106,
Standard Manufacturer’s Identification Code.

Normally, this field identifies the designer of the ADIv6 implementation, rather than the system
architect or the device manufacturer. If the DP is used for boundary scan, however, the field must
conform to the JEDEC Manufacturer ID assigned to the manufacturer of the device.

The Arm default value for this field is 0x23B. Other designers must use their own JEDEC assigned
code.

Bit[0]

Table B3-10 JEDEC JEP106 manufacturer ID code, with Arm values

JEP106 field Width (bits) Bits in IDCODE Arm registered value

Continuation code 4 Bits[11:8] 0b0100 (0x4)

Identity code 7 Bits[7:1] 0b0111011 (0x3B)

Data[31:0]

1VERSION

31 28 27 12 11 1 0

PARTNO DESIGNER

DBGTDI DBGTDO
B3-110 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
RAO.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B3-111
ID072524 Non-Confidential

B3 The JTAG Debug Port
B3.4 DR scan chain and DR instructions
B3-112 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Chapter B4
The Serial Wire Debug Port

This chapter describes the implementation of the Serial Wire Debug Port (SW-DP), including the SWD interface.
It is only relevant if the Arm Debug Interface implementation uses an SW-DP. In this case, the SW-DP provides the
external connection to the debug interface, and all interface accesses are made using the SWD protocol summarized
in this chapter.

Note

The Arm SWD interface is a synchronous serial interface. This specification does not describe the physical
characteristics of the SWD interface, such as signal timings.

This chapter contains the following sections:

• About the SWD protocol on page B4-114.

• SWD protocol operation on page B4-118.

• SWD interface on page B4-130.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-113
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.1 About the SWD protocol
B4.1 About the SWD protocol

This section provides general information about the Arm SWD protocol. It contains the following sections:

• Basic operation.

• SWD protocol versions.

• Line turnaround.

• Idle cycles.

• Bit order.

• Parity.

• Limitations of multi-drop.

B4.1.1 Basic operation

The Arm SWD interface uses a single, bidirectional data connection and a separate clock to transfer data
synchronously.

An operation on the wire consists of two or three phases:

Packet request

The external host debugger issues a request to the DP. The DP is the target of the request.

Acknowledge response

The target sends an acknowledge response to the host.

Data transfer phase

This phase is only present when either:

• A data read or data write request is followed by a valid (OK) acknowledge response.

• The CTRL/STAT.ORUNDETECT flag is 0b1.

The data transfer is one of:

• Target to host, following a read request (RDATA).

• Host to target, following a write request (WDATA).

If the CTRL/STAT.ORUNDETECT bit is 0b1, a data transfer phase is required on all responses,
including WAIT and FAULT. For more information, see Sticky overrun behavior on page B4-123.

When the SW-DP receives a packet request from the debug host, it must respond immediately by entering the
acknowledge phase. There is a turnaround period between these phases, as they are in different directions. If a data
phase is required, it follows immediately after the acknowledge phase.

For a write request, there is a turnaround period between the acknowledge phase and the WDATA data transfer
phase. Following the WDATA data transfer phase the host continues to drive the wire. There is no additional
turnaround period.

For a read request, there is no turnaround period between the acknowledge phase and the data transfer phase. There
is a turnaround period following the RDATA data transfer phase, following which the host drives the wire.

To ensure that the transfer can be clocked through the SW-DP, after the data transfer phase the host must do one of
the following:

• Immediately start a new SWD operation with the start bit of a new packet request.

• Continue to drive the SWD interface with idle cycles until the host starts a new SWD operation.

• If the host is driving the SWD clock, continue to clock the SWD interface with at least eight idle cycles. After
completing this sequence, the host can stop the clock.
B4-114 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B4 The Serial Wire Debug Port
B4.1 About the SWD protocol
B4.1.2 SWD protocol versions

SWD protocol version 1 is a point-to-point architecture, supporting connection between a single host and a single
device. It permits connection to multiple devices by providing extra connections from the host, which has several
disadvantages:

• It complicates the physical connection standard, by having variants with different numbers of connections.

• It increases the number of pins that are required for the connector on the device PCB, which is unacceptable
where size is a limiting factor.

• It increases the number of pins that are required on a package with multiple dies inside.

• It makes it difficult to integrate multiple platforms that are accessed by the SWD protocol into the same chip.

Techniques to solve this require connections that are shared between multiple Serial Wire devices. These
connections are detrimental to the maximum speed of operation, but in many situations they provide an acceptable
trade-off.

SWD protocol version 2 is a multi-drop architecture that:

• Enables a two-wire host connection to communicate simultaneously with multiple devices.

• Permits an effectively unlimited number of devices to be connected simultaneously, subject to electrical
constraints.

• Is largely backwards-compatible, because provision for multi-drop support in a device does not break
point-to-point compatibility with existing host equipment that does not support the multi-drop extensions.
For more information, see SWD protocol versions.

• Permits a device to power down completely, while the device is not selected.

• Prevents multiple devices from driving the wire simultaneously, and continues to support the wire being
actively driven both HIGH and LOW, maintaining a high maximum clock speed.

• Permits multi-drop connections incorporating devices that do not implement the SWD protocol.

Note

SWD protocol version 2 requires the implementation of dormant state, which can limit its compatibility with SWD
version 1:

• For an SWJ-DP implementation, JTAG is selected on a powerup reset. Selecting SWD bypasses the dormant
state, and subsequent operation is compatible with SWD protocol version 1.

• For an SW-DP implementation of SWD protocol version 2, the dormant state is selected on a powerup reset,
meaning the start-up state differs from a start-up with SWD protocol version 1. After SWD operation is
selected, operation is compatible with SWD protocol version 1.

B4.1.3 Line turnaround

To prevent contention, a turnaround period is required when the device driving the wire changes. For the turnaround
period, neither the host nor the target drives the wire, and the state of the wire is undefined. See also Line pull-up
on page B4-130.

Note

The line turnaround period can provide for pad delays when using a high sample clock frequency.

The length of the turnaround period is controlled by DLCR.TURNROUND. The default setting is a turnaround
period of one clock cycle.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-115
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.1 About the SWD protocol
B4.1.4 Idle cycles

After completing a transaction, the host must either insert idle cycles or continue immediately with the start bit of
a new transaction.

The host clocks the SWD interface with the line LOW to insert idle cycles.

B4.1.5 Bit order

All data values in SWD operations are transferred LSB first.

For example, the OK response of 0b001 appears on the wire as 1, followed by 0, followed by 0, as shown in
Figure B4-1 on page B4-119 and Figure B4-2 on page B4-120.

B4.1.6 Parity

A simple parity check is applied to all packet request and data transfer phases. Even parity is used:

Packet requests

The parity check is made over the four bits APnDP, RnW and A[2:3]:

• If the number of bits with a value of 0b1 is odd, the parity bit is set to 0b1.

• If the number of bits with a value of 0b1 is even, the parity bit is set to 0b0.

Data transfers (WDATA and RDATA)

The parity check is made over the 32 data bits WDATA[0:31] or RDATA[0:31]:

• If the number of bits with a value of 0b1 is odd, the parity bit is set to 0b1.

• If the number of bits with a value of 0b1 is even, the parity bit is set to 0b0.

The packet request parity bit is shown in each of the diagrams in this section, from Figure B4-1 on page B4-119 to
Figure B4-7 on page B4-124. It appears on the wire immediately after the A[2:3] bits. A parity error in the packet
request is detected by the SW-DP, which responds with a protocol error. See Protocol error response on
page B4-122.

The WDATA parity bit is shown in Figure B4-1 on page B4-119 and in Figure B4-7 on page B4-124. It appears on
the wire immediately after the WDATA[31] bit. A parity error in the WDATA data transfer phase is detected by the
SW-DP and, other than writes to TARGETSEL, recorded in CTRL/STAT.WDATAERR. If overrun detection is
enabled, it is IMPLEMENTATION DEFINED whether CTRL/STAT.STICKYORUN is set to 0b1. A parity error in a write
to TARGETSEL deselects the target.

If a SWD write parity error occurs, the transaction is discarded and the register is not updated. This applies to both
DP and AP writes.

The RDATA parity bit is shown in Figure B4-2 on page B4-120. It appears on the wire immediately after the
RDATA[31] bit. The debugger must check for parity errors in the RDATA data transfer phase and retry the read if
necessary.

Note

The ACK[0:2] bits are never included in the parity calculation. Debuggers must remember this principle when
parity checking the data from a read operation, when the debugger receives a continuous stream of 36 bits, as shown
in Figure B4-2 on page B4-120:

• Bit 35 is the parity bit.

• Bits 3-34 are RDATA[0:31].

• Bits 0-2 are ACK[0:2].

The parity check must be applied to bits 3-34 of this block of data, and the result must be compared with bit 35, the
parity bit.
B4-116 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B4 The Serial Wire Debug Port
B4.1 About the SWD protocol
B4.1.7 Limitations of multi-drop

This section describes the configuration and auto-detection limitations of a multi-drop SWD system.

System configuration

Each device must be configured with a unique target ID, which includes a 4-bit instance ID, to differentiate between
otherwise identical targets. The 4-bit ID places a limit of 16 such targets in any system. This limit means that
identical devices must be configured before they are connected together to ensure that their instance IDs do not
conflict.

Auto-detection of the target

It is not possible to interrogate a multi-drop SWD system that includes multiple devices to establish which devices
are connected. For a target with multiple devices, because all devices are selected on coming out of a line reset, no
communication with a device is possible without prior selection of that target using its target ID. Therefore,
connection to a multi-drop SWD system that includes multiple devices requires that either:

• The host has prior knowledge of the devices in the system and is configured before target connection.

• The host attempts auto-detection by issuing a target select command for each of the devices it has been
configured to support. While auto-detection is likely to involve many target select commands, it must be
possible to iterate through all the supported devices in a reasonable time from the viewpoint of a user of the
debug tools.

For this reason, debug tools cannot connect seamlessly to targets in a multi-drop SWD system that they have never
seen before. If the debug tools can be provided with the target ID of such targets, however, the contents of the target
can be auto-detected as normal.

To protect against multiple selected devices all driving the line simultaneously, the SWD protocol version 2
requires:

• For multi-drop SWJ-DP, the JTAG connection is selected out of powerup reset. JTAG does not drive the line.
See Chapter B5 The Serial Wire/JTAG Debug Port.

• For multi-drop SW-DP, the DP is in the dormant state out of powerup reset. See Dormant operation on
page B5-139.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-117
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
B4.2 SWD protocol operation

This section gives an overview of the bidirectional operation of the protocol. It illustrates each of the possible
sequences of operations on the SWD interface data connection.

Note

The diagrams in this section are included to show the operation of the SWD protocol. They are not timing diagrams
for the protocol.

• Successful write operation (OK response) on page B4-119.

• Successful read operation (OK response) on page B4-120.

• WAIT response to read or write operation request on page B4-121.

• FAULT response to read or write operation request on page B4-121.

• Protocol error response on page B4-122.

• Sticky overrun behavior on page B4-123.

• SW-DP write buffering on page B4-124.

The illustrations of the different possible operations use the following terms:

Start A single start bit, with value 0b1.

APnDP A single bit, indicating whether the Debug Port or the Access Port Access register is to be accessed.
This bit is 0b0 for a DPACC access, or 0b1 for an APACC access.

RnW A single bit, indicating whether the access is a read or a write. This bit is 0b0 for a write access, or
0b1 for a read access.

A[2:3] Two bits, giving the A[3:2] address field for the DP or AP register Address:

• For a DPACC access, the register being addressed depends on the A[3:2] value and, if
A[3:2]==0b01, the value that is held in SELECT. DPBANKSEL. For details, see DP
architecture version 3 (DPv3) address map on page B2-51.

• For an APACC access, the register being addressed depends on the A[3:2] value and the value
that is held in SELECT.ADDR. For details about addressing, see:

— MEM-AP programmers’ model on page C2-198 for accesses to a MEM-AP register

— JTAG-AP programmers’ model on page C3-259 for accesses to a JTAG-AP register.

Note

The A[3:2] value is transmitted Least Significant Bit (LSB) first on the wire, which is why it appears
as A[2:3] on the diagrams.

Parity A single parity bit for the preceding packet. See Parity on page B4-116.

Stop A single stop bit. In the synchronous SWD protocol, this bit is always 0b0.

Park A single bit. The host must drive the Park bit HIGH to park the line before tristating it for the
turnaround period, to ensure that the line is read as HIGH by the target, which is required because
the pull-up on the SWD interface is weak. The target reads this bit as 0b1.

Trn Turnaround. See Line turnaround on page B4-115.

Note

All the examples that are given in this chapter show the default turnaround period of one cycle.

ACK[0:2] A 3-bit target-to-host response.

Note

The ACK value is transmitted LSB-first on the wire, which is why it appears as ACK[0:2] on the
diagrams.
B4-118 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation

WDATA[0:31]

32 bits of write data, from host to target.

Note

The WDATA value is transmitted LSB-first on the wire, which is why it appears as WDATA[0:31]
on the diagrams.

RDATA[0:31]

32 bits of read data, from target to host.

Note

The RDATA value is transmitted LSB-first on the wire, which is why it appears as RDATA[0:31]
on the diagrams.

B4.2.1 Successful write operation (OK response)

On receiving a write packet request, if the SW-DP is ready for the WDATA data transfer phase, and there is no error
condition, it issues an OK response. This response is indicated by a response value of 0b001.

This response does not apply to writes to TARGETSEL. See Connection and line reset sequence on page B4-130.

Therefore, a successful write operation consists of three phases:

1. An 8-bit write packet request, from the host to the target.

2. A 3-bit OK acknowledge response, from the target to the host.

3. A 33-bit WDATA data transfer phase, from the host to the target.

By default, there are single-cycle turnaround periods between each of these phases. See Line turnaround on
page B4-115 for more information.

A successful write operation is shown in Figure B4-1.

Figure B4-1 SWD successful write operation

Table B4-1 SWD ACK responses summary table

ACK[0:2] encoding Response See:

0b100 OK Successful write operation (OK response),
Successful read operation (OK response) on
page B4-120.

0b010 WAIT WAIT response to read or write operation
request on page B4-121.

0b001 FAULT FAULT response to read or write operation
request on page B4-121.

Pa
rit

y

Tr
n001Tr
n

St
op

Pa
rit

y

AP
nD

P

0

St
ar

t

A[2:3]

Pa
rk WDATA[0:31]

Wire driven by: Host Target Host

Clock
ACK[0:2]RnW
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-119
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
The host must start transferring the write data immediately after receiving the OK acknowledge response from the
target. This behavior is the same for writing to the DP or to an AP. The OK response that is shown in Figure B4-1
on page B4-119 indicates that the DP is ready to accept the write data. The DP writes this data after the write phase
has completed, and therefore the response to the DP write itself is given on the next operation. However, the SW-DP
can buffer AP writes, as described in SW-DP write buffering on page B4-124.

There is no turnaround phase after the data phase. The host is driving the line, and can start the next operation
immediately.

B4.2.2 Successful read operation (OK response)

On receiving a read packet request, if the SW-DP is ready for the RDATA data transfer phase, and there is no error
condition, it issues an OK response. This response is indicated by a response value of 0b001.

Therefore, a successful read operation consists of three phases:

1. An 8-bit read packet request, from the host to the target.

2. A 3-bit OK acknowledge response, from the target to the host.

3. A 33-bit RDATA data transfer phase, where data is transferred from the target to the host.

By default, there are single-cycle turnaround periods between the first and second of these phases, and after the third
phase. See Line turnaround on page B4-115 for more information. However, there is no turnaround period between
the second and third phases, because the line is driven by the target in both of these phases.

Figure B4-2 shows a successful read operation.

Figure B4-2 SWD successful read operation

If the host requested a read access to the DP, the SW-DP sends the read data immediately after the acknowledgment
response.

Read accesses to the AP are posted, which means that the result of the access is returned on the next transfer. This
result can be another AP register read, or a DP register read of RDBUFF.

To make a series of AP reads, a debugger only has to insert one read of the RDBUFF register:

• On the first AP read access, the read data that is returned is unknown. The debugger must discard this result.

• The next AP read access, if successful, returns the result of the previous AP read.

• This response can be repeated for any number of AP reads. Issuing the last AP read packet request returns
the penultimate AP read result.

• The debugger can then read the DP RDBUFF register to obtain the last AP read result.

So that a debugger can recover from line errors, the next transaction after an AP register read can be any DP register
read. If the next transaction is a DP register read other than a read of RDBUFF then a following AP register read or
read of RDBUFF returns the result of the first AP register read.

If the next transaction following an AP register read is an AP register write or a DP register write, the result of the
first AP register read is lost because any following AP register read or read of RDBUFF returns an UNKNOWN value.

Pa
rit

y

001Tr
n

St
op

Pa
rit

y

AP
nD

P

1

St
ar

t

A[2:3]

Pa
rk RDATA[0:31] Tr
n

Wire driven by: Host Target

Clock
ACK[0:2]RnW
B4-120 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
B4.2.3 WAIT response to read or write operation request

If the SW-DP is not able to process the request from the debugger immediately, it must issue a WAIT response. A
WAIT response to a read or write packet request consists of two phases:

1. An 8-bit read or write packet request, from the host to the target.

2. A 3-bit WAIT acknowledge response, from the target to the host.

By default, there are single-cycle turnaround periods between these two phases and after the second phase. See Line
turnaround on page B4-115 for more information.

A WAIT response to a read or write packet request is shown in Figure B4-3.

Figure B4-3 SWD WAIT response to a packet request

If overrun detection is enabled, CTRL/STAT.STICKYORUN is set to 0b1 and a data phase is required on a WAIT
response. For more information, see Sticky overrun behavior on page B4-123.

A WAIT response must not be issued in response to the following requests, which must always be processed
immediately:

• Reads of the DPIDR register.

• Reads of the CTRL/STAT register.

• Writes to the ABORT register.

In response to any other request, if any of the following are true, the DP issues a WAIT response if it cannot process
the request:

• A previous AP or DP access is outstanding.

• The new request is an AP read request and the result of the previous AP read is not yet available.

Normally, when a debugger receives a WAIT response it retries the same operation, to process data as quickly as
possible. However, if several retries have been attempted, with a wait that is long enough for a slow interconnection
and memory system to respond, the debugger might write to ABORT.DAPABORT, if appropriate. This value
signals to the active AP that it must terminate the transfer that it is attempting. An AP implementation might be
unable to terminate a transfer on its SoC interface, but on receiving an AP abort request the AP must free up the
interface to the DP.

Writing to the ABORT register after receiving a WAIT response enables the debugger to access other parts of the
debug system.

B4.2.4 FAULT response to read or write operation request

An SW-DP must not issue a FAULT response in response to:

• Reads of the DPIDR register, which is a read-only register.

• Reads of the CTRL/STAT register, which is a read/write register.

• Writes to the ABORT register, which is a write-only register.

For any other access, the SW-DP issues a FAULT response if any sticky flag is set to 0b1 in the CTRL/STAT register.

A FAULT response to a read or write packet request consists of two phases:

1. An 8-bit read or write packet request, from the host to the target.

2. A 3-bit FAULT acknowledge response, from the target to the host.

R
nW Tr
n010Tr
n

St
op

Pa
rit

y

AP
nD

P
St

ar
t

A[2:3]

Pa
rk

Wire driven by: Host Target

Clock

ACK[0:2]
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-121
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
By default, there are single-cycle turnaround periods between these two phases, and after the second phase. See Line
turnaround on page B4-115 for more information.

A FAULT response to a read or write packet request is shown in Figure B4-4.

Figure B4-4 SWD FAULT response to a packet request

If overrun detection is enabled, CTRL/STAT.STICKYORUN is set to 0b1 and a data phase is required on a FAULT
response. For more information, see Sticky overrun behavior on page B4-123.

Use of the FAULT response enables the protocol to remain synchronized. A debugger might stream a block of data
and then check the CTRL/STAT register at the end of the block.

In an SW-DP, the sticky error flags are cleared to 0b0 by writing bits in the ABORT register.

B4.2.5 Protocol error response

If any of the following occurs, a protocol error occurs:

• The Parity bit does not match the parity of the packet request.

For more information about the parity checks in the SWD protocol, see Parity on page B4-116.

• The Stop bit is not 0b0.

• The Park bit is not 0b1.

• DLCR.TURNROUND indicates an unsupported turnaround period.

Note

A mismatch between the Parity bit in the WDATA transfer phase and the parity of the data does not cause a protocol
error response, because the SW-DP has already given its response to the header. For more information, see Sticky
flags and DP error responses on page B1-43.

Target response to protocol errors

On detecting a protocol error, the target enters the protocol error state.

If overrun detection is enabled, CTRL/STAT.STICKYORUN is set to 0b1 and the target must wait until the data
phase of the transaction has completed before entering the protocol error state. Otherwise, it enters the protocol error
state immediately.

When a protocol error is detected by the SW-DP, the SW-DP does not reply to the packet request and does not drive
the line. This situation is illustrated in Figure B4-5 on page B4-123.

Note

 If SWD protocol version 2 is implemented, the SW-DP does also not reply to a TARGETSEL register write packet
request.

R
nW Tr
n100Tr
n

St
op

Pa
rit

y

AP
nD

P
St

ar
t

A[2:3]

Pa
rk

Wire driven by: Host Target

Clock

ACK[0:2]
B4-122 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
Figure B4-5 SWD protocol error after a packet request

In the protocol error state, the target behaves as follows:

• If the target detects a valid read of the DP DPIDR register, it is IMPLEMENTATION DEFINED whether the target
leaves the protocol error state, and gives an OK response.

• If the target detects a valid packet header other than the read of the DP DPIDR register, or the target detects
an IMPLEMENTATION DEFINED number of additional protocol errors, it enters the lockout state.

Arm recommends that the target enters the lockout state after one more protocol error is detected while in the
protocol error state.

If the target cannot leave the protocol error state on a read of the DPIDR register, the protocol error and lockout
states are equivalent.

The target must leave the protocol error state on a line reset.

The target only leaves the lockout state on a line reset.

If the SW-DP implements SWD protocol version 2, it must enter the lockout state after a single protocol error
immediately after a line reset. However, if the first packet request detected by the target following line reset is valid
it can then revert to entering the lockout state after an IMPLEMENTATION DEFINED number of protocol errors.

Host response to protocol errors

If the host does not receive an expected response from the target, it must not drive the line for at least the length of
any potential data phase and then attempt a line reset. For more information, see Connection and line reset sequence
on page B4-130.

The host can attempt reads of the DP DPIDR register before attempting a line reset, as the target might respond and
leave the protocol error state, but Arm does not recommend this solution.

If the transfer that resulted in the original protocol error response was a write, it can be assumed that no write
occurred. If the original transfer was a read, it is possible that the read was issued to an AP. Although this scenario
is unlikely, the possibility must be considered because reads are pipelined.

B4.2.6 Sticky overrun behavior

If an SW-DP receives a transaction request when the previous transaction has not completed, it returns a WAIT
response. If overrun detection is enabled in the CTRL/STAT register, the CTRL/STAT.STICKYORUN flag is set to
0b1. Subsequent transactions generate FAULT responses, because a sticky flag is 0b1. If overrun detection is
enabled, CTRL/STAT.STICKYORUN is also set if there is a FAULT response, protocol error, or line reset.

When overrun detection is enabled, WAIT and FAULT responses require a data phase:

• If the transaction is a read, the data in the data phase is UNKNOWN. The target does not drive the line, and the
host must not check the parity bit.

• If the transaction is a write, the data phase is ignored.

Figure B4-6 on page B4-124 shows the WAIT or FAULT response to a read operation when overrun detection is
enabled.

R
nW St
op

Pa
rit

y

AP
nD

P
St

ar
t

A[2:3]

Pa
rk

Wire driven by: Host

Clock

Line not driven by target

Packet request
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-123
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
Figure B4-6 SW-DP WAIT or FAULT response to a read operation when overrun detection is enabled

Figure B4-7 shows the response to a write operation when overrun detection is enabled.

Figure B4-7 SW-DP WAIT or FAULT response to a write operation when overrun detection is enabled

B4.2.7 SW-DP write buffering

The SW-DP can implement a write buffer, enabling it to accept write operations even when other transactions are
outstanding. If a DP implements a write buffer, it issues an OK response to a write request if it can accept the write
into its write buffer. This response means that an OK response to a write request, other than a write to the ABORT
register in the DP, indicates only that the write has been accepted by the DP. It does not indicate that all previous
transactions have completed.

The maximum number of outstanding transactions, and the types of transactions that might be outstanding, when a
write is accepted, are IMPLEMENTATION DEFINED. However, the DP must be implemented so that all accesses occur
in order. For example, if a DP only buffers writes to AP registers and it has any buffered writes, it must stall on a
DP register write access to ensure that the writes are performed in order.

If a write is accepted into the write buffer but later abandoned, the CTRL/STAT.WDATAERR flag is set to 0b1. A
buffered write is abandoned if:

• A sticky flag is set to 0b1 by a previous transaction.

• A DP read of the DPIDR, DPIDR1 or CTRL/STAT register is made. Because the DP must not stall reads of
these registers, it must:

— Perform the DPIDR, DPIDR1 or CTRL/STAT register access immediately.

— Discard any buffered writes, because otherwise they would be performed out-of-order.

— Set the WDATAERR flag to 0b1.

• A DP write of the ABORT register is made. The DP must not stall an ABORT register access.

The flag being set means that if software makes a series of AP write transactions, it might not be possible to
determine which transaction failed from examining the ACK responses, but it might be possible to use other
inquiries to find which write failed. For example, if when using the auto-address increment (AddrInc) feature of a
Memory Access Port, software can read the TAR to find the address of the last successful write transaction.

The write buffer must be emptied before the following operations can be performed:

• Any AP read operation.

• Any DP operation other than a read of the DPIDR, DPIDR1, or CTRL/STAT register, or a write of the
ABORT register.

100

010

Tr
n

St
op

Pa
rit

y

AP
nD

P

1

St
ar

t

A[2:3]

Pa
rk

Tr
n

Wire driven by: Host Target

Clock

WAIT
FAULT

ACK[0:2]RnW

Line not driven for 33 cycles
(32 data bits + parity bit)

100

010

Pa
rit

y

Tr
n

Tr
n

St
op

Pa
rit

y

AP
nD

P

0

St
ar

t

A[2:3]

Pa
rk WDATA[0:31]

Value is ignored by the target

Wire driven by: Host Target Host

Clock

WAIT
FAULT

ACK[0:2]RnW
B4-124 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
If the write buffer is not empty, attempting these operations causes a WAIT response from the DP.

Note

If pushed-verify or pushed-compare is enabled, AP write transactions are converted into AP reads. These
transactions are then treated in the same way as other AP read operations. See Pushed-compare and pushed-verify
operations on page B1-46 for details of these operations.

If a DP read of the DPIDR, DPIDR1 or CTRL/STAT register, or a DP write to the ABORT register, is required
immediately after a sequence of AP writes, the software must first perform an access that the DP is able to stall, to
ensure that the write buffer is emptied before the DP register access is performed. If this access is not done,
WDATAERR might be set to 0b1, causing the buffered writes to be lost.

Note

There is no requirement to insert an extra instruction to terminate the sequence of AP writes if the sequence of writes
is followed by one of:

• An AP read operation.

• A write operation that can be stalled, such as a write to the SELECT register.

Often the requirement for an extra instruction can be avoided.

B4.2.8 Summary of target responses

The following subsections show the target SW-DP responses for different transaction requests:

• Target SW-DP responses to DP transaction requests.

• Target SW-DP responses to AP transaction requests on page B4-127.

Target SW-DP responses to DP transaction requests

For DP transaction requests, the register that is accessed is determined by:

• The value of A[3:2].

• When A[3:2] is 0b01, the value of SELECT.DPBANKSEL.

The behavior of some read transaction requests depends on the register that is accessed, as Table B4-2 on
page B4-125 shows.

Table B4-2 on page B4-125 shows the target SW-DP response to all possible debugger DP read operation requests.

Table B4-3 on page B4-126 shows the target SW-DP response to all possible debugger DP write operation requests,
assuming the WDATA parity check is good.

Table B4-2 Target response summary for DP read transaction requests

A[3:2]
SELECT.
DPBANKSEL

Sticky flag
value 0b1?

AP
Ready?

SW-DP (target) response

ACK Action

0b00 x xa xa OK Respond with register value.

0b01 0x0 xa xa OK Respond with register value.

Not 0x0 No Yes OK Respond with register value.

No No WAIT No data phase, unless overrun detection
is enabledb.

Yes x FAULT No data phase, unless overrun detection
is enabledb.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-125
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
0b10 x No Yes OK Respond by resending the last read value
that is sent to the host. This value is the
result of one of:

• The most recent AP read

• The most recent DP RDBUFF
read.

No No WAIT No data phase, unless overrun detection
is enabledb.

Yes x FAULT No data phase, unless overrun detection
is enabledb.

0b11 x No Yes OK Respond with the value from the
previous AP read, and set
CTRL/STAT.READOK bit to 0b1.

No No WAIT No data phase, unless overrun detection
is enabledb. Set CTRL/STAT.READOK
bit to 0b0.

Yes x FAULT No data phase, unless overrun detection
is enabledb. Set CTRL/STAT.READOK
bit to 0b0.

a. The SW-DP must always give an OK response to a read of the DPIDR or CTRL/STAT register.

b. See Sticky overrun behavior on page B4-123 for details about the data phase when overrun detection is enabled.

Table B4-3 Target response summary for DP write transaction requests

A[3:2]
Protocol
version

Sticky flag
value 0b1?

AP
Ready?

SW-DP (target) response

ACK Action

0b00 x x x OK Write WDATA value to ABORT register.

0b01 or

0b10

x No Yesa OK Write WDATA value to the selected DP
register.

No WAIT No data phase, unless overrun detection
is enabledb.

Yes x FAULT No data phase, unless overrun detection
is enabledb.

Table B4-2 Target response summary for DP read transaction requests (continued)

A[3:2]
SELECT.
DPBANKSEL

Sticky flag
value 0b1?

AP
Ready?

SW-DP (target) response

ACK Action
B4-126 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
Fault conditions that are not shown in these tables are described in Fault conditions not included in the target
response tables on page B4-128.

Target SW-DP responses to AP transaction requests

For AP transaction requests, the register that is accessed is determined by the value of A[3:2] combined with the
values of SELECT.ADDR. For more information, see Using the AP to access debug resources on page A1-31.

Table B4-4 summarizes the target SW-DP response to all possible debugger AP read operation requests.

Table B4-5 on page B4-128 summarizes the target SW-DP response to all possible debugger AP write operation
requests, assuming the WDATA parity check is good.

0b11 v1 No Yesa OK Register is reserved, SBZ. Write is
ignored.

No WAIT No data phase, unless overrun detection
is enabledb.

Yes x FAULT No data phase, unless overrun detection
is enabledb.

v2 x x None Write WDATA to TARGETSEL
registerc.

a. Writes might be accepted when other transactions are still outstanding. These writes might be abandoned later. See
SW-DP write buffering on page B4-124 for more information.

b. See Sticky overrun behavior on page B4-123 for details about the data phase when overrun detection is enabled.

c. Target does not respond. See Connection and line reset sequence on page B4-130.

Table B4-4 Target response summary for AP read transaction requests

A[3:2]
Sticky flag
value 0b1?

AP
Ready?

SW-DP (target) response

ACK Action

0bxx No Yes OK Normallya, return value from previous
AP readb and set CTRL/STAT.READOK
bit to 0b1. Initiate AP read of addressed
register.

a. If pushed-verify or pushed-compare is enabled, behavior is UNPREDICTABLE.

b. On the first of a sequence of AP reads, the value that is returned in the data phase is UNKNOWN.

No WAIT No data phase, unless overrun detection
is enabledc. Set CTRL/STAT.READOK
bit to 0b0.

c. See Sticky overrun behavior on page B4-123 for details of data phase when overrun detection
is enabled.

Yes x FAULT No data phase, unless overrun detection
is enabledc. Set CTRL/STAT.READOK
bit to 0b0.

Table B4-3 Target response summary for DP write transaction requests (continued)

A[3:2]
Protocol
version

Sticky flag
value 0b1?

AP
Ready?

SW-DP (target) response

ACK Action
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-127
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation
Fault conditions that are not shown in these tables are described in Fault conditions not included in the target
response tables.

Fault conditions not included in the target response tables

There are two fault conditions that are not included in possible operation requests listed in Table B4-2 on
page B4-125 to Table B4-5:

Protocol error

If there is a protocol error, the target does not respond to the request at all, which means that when
the host expects an ACK response, it finds that the line is not driven. See Protocol error response
on page B4-122.

WDATA fails parity check (write operations only)

The ACK response of the DP is sent before the parity check is performed, and is shown in
Table B4-3 on page B4-126. When the parity check is performed and fails, the
CTRL/STAT.WDATAERR flag is set to 0b1.

B4.2.9 Summary of host responses

Every access by a debugger to an SW-DP starts with an operation request. Summary of target responses on
page B4-125 listed all possible requests from a debugger, and summarized how the SW-DP responds to each
request.

Whenever a debugger issues an operation request to an SW-DP, it expects to receive a 3-bit acknowledgment, as
listed in the ACK columns of Table B4-2 on page B4-125 to Table B4-5. Table B4-6 on page B4-129 summarizes
how the debugger must respond to this acknowledgment, for all possible cases.

Note

For SWD protocol version 2, this table does not apply to writes to TARGETSEL. See Connection and line reset
sequence on page B4-130.

Table B4-5 Target response summary for AP write transaction requests

A[3:2]
Sticky flag
value 0b1?

AP
Ready?

SW-DP (target) response

ACK Action

0bxx No Yesa

a. Writes might be accepted when other transactions are still outstanding. These writes might be
abandoned later. See SW-DP write buffering on page B4-124 for more information.

OK Normallyb, write WDATA value to the
indicated AP register.

b. If pushed-verify or pushed-compare is enabled, the write is converted to a read of the
addressed AP register, and the value that is returned by this read is compared with the supplied
WDATA value, see Pushed-compare and pushed-verify operations on page B1-46 for more
information.

No WAIT No data phase, unless overrun detection
is enabledc.

c. See Sticky overrun behavior on page B4-123 for details of data phase when overrun detection
is enabled.

Yes x FAULT No data phase, unless overrun detection
is enabledc.
B4-128 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B4 The Serial Wire Debug Port
B4.2 SWD protocol operation

Table B4-6 Summary of host (debugger) responses to the SW-DP acknowledge

Operation
requested

ACK
received

Host response

Data phase Additional action

R OK Capture RDATA from target
and check for valid paritya
and protocol.

a. See Parity on page B4-116 for details of the parity checking.

If a parity or protocol fault occurs and it is not
possible to flag the data as invalid, the host may
have to repeat original read request or use the
RESEND registerb.

b. The host debugger might support corrupted reads, or it might have to retry the transfer.

Invalid
ACK

Back off because of possible
data phase.

The host can check CTRL/STAT register to see if
the response sent was OK.

W OK Send WDATA. Validity of this transfer is confirmed on next
access.

Invalid
ACK

Back off to ensure that target
does not capture next header
as WDATA.

Repeat the write access. A FAULT response is
possible if the first response was sent as OK but
not recognized as valid by the debugger. The
subsequent write is not affected by the first,
misread, response.

x WAIT No data phase, unless overrun
detection is enabledc.

c. If overrun detection is enabled, a data phase is required. See Sticky overrun behavior on page B4-123 for a
description of the behavior on read and write operations.

Normally, repeat the original operation request.
See WAIT response to read or write operation
request on page B4-121 for more information.

FAULT No data phase, unless overrun
detection is enabledc.

Can send new headers, but only an access to DP
register addresses 0b0X gives a valid response.

No ACK Back off because of possible
data phase.

Can attempt IDCODE register read. Otherwise
reset connection and retrain. See Protocol error
response on page B4-122.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-129
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.3 SWD interface
B4.3 SWD interface

The SWD protocol uses a synchronous serial interface, which comprises a single bidirectional data signal, and a
clock signal.

This section gives an overview of the physical SWD interface.

B4.3.1 Line interface

The SWD interface uses a single bidirectional data pin, SWDIO. The same signal is used for both host and target
sourced signals.

The SWD interface is synchronous, and requires a clock pin, SWCLK.

When the target samples SWDIO, sampling is performed on the rising edge of SWCLK. When the target drives
SWDIO, or stops driving it, signal changes are performed on the rising edge of SWCLK.

The clock can be sourced from the target and exported, or provided by the host. This clock is then used by the host
as a reference for generation and sampling of data so that the target is not required to perform any over-sampling.

Both the target and host can drive the bus HIGH and LOW or tristate it. The ports must be able to tolerate short
periods of contention that might occur because of a loss of synchronization.

The clock can be asynchronous to any system clock, including the debug logic clock. The SWD interface clock can
be stopped when the debug port is idle, see About the SWD protocol on page B4-114.

B4.3.2 Line pull-up

To make sure that the line is in a known state when neither host nor target is driving the line, a 100KΩ pull-up is
required at the target. This pull-up can only be relied on to maintain the state of the wire. If the wire is driven LOW
and released, the pull-up resistor eventually returns the line to the HIGH state, but this process takes many clock
cycles.

The pull-up is intended to prevent false detection of signals when no host is connected, and must be of a suitably
high value to reduce current consumption from the target when the host actively pulls down the line.

Note

A small current drains from the target whenever the line is driven LOW. If the interface is left connected for
extended periods when the target has to use a low-power mode, the line must be held HIGH, or reset, by the host
until the interface is activated.

B4.3.3 Connection and line reset sequence

A debugger must use a line reset sequence to ensure that hot-plugging the serial connection does not result in
unintentional transfers. The line reset sequence ensures that the SW-DP is synchronized correctly to the header that
signals a connection.

The SWD interface does not include a reset signal. A line reset is achieved by holding the data signal HIGH for at
least 50 clock cycles, followed by at least two idle cycles. Figure B4-8 on page B4-131 shows the interface timing
for a line reset followed by a DP DPIDR register read.
B4-130 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B4 The Serial Wire Debug Port
B4.3 SWD interface
Figure B4-8 Line reset sequence followed by a DP DPIDR register read

A line reset is required when first connecting to the target. A line reset might be required following a protocol error.
See Protocol error response on page B4-122.

After a line reset:

• DLCR is reset.

• SELECT.DPBANKSEL must be reset to 0x0.

Note

Other SW-DP registers are reset only by a powerup reset.

When waiting for a packet header, if the target detects a sequence of 50 clock cycles with the data signal held HIGH,
followed by at least two idle cycles, it must enter the reset state. Whether a sequence of 50 clock cycles with the
data signal held HIGH that is detected at any other time causes the interface to enter the reset state is
IMPLEMENTATION DEFINED.

The only valid transactions in reset state are:

• A read of the DPIDR register. This transaction takes the connection out of reset state.

• One of the switching sequences defined by Switching between SWD and JTAG on page B5-136, if
implemented.

• A write to the TARGETSEL register, if SWD protocol version 2 is implemented. If this transaction selects
the target, the interface remains in reset state.

Note
Only writes to TARGETSEL immediately after entry to the reset state can select or deselect the target. See
Target selection protocol, SWD protocol version 2.

Any of these sequences can be aborted by a second line reset. The behavior of the target is UNPREDICTABLE if any
other transaction is made in reset state.

If the host does not see an expected response when reading the DPIDR register, it must retry the reset sequence,
because the target might have been in a state where, for example, it treated the initial line reset as a data phase of a
transaction and therefore did not detect it as a valid line reset. If so, the target detects the line reset as a protocol
error and requires a second line reset to respond correctly.

If overrun detection is enabled, then the line reset sets CTRL/STAT.STICKYORUN to 0b1.

B4.3.4 Target selection protocol, SWD protocol version 2

1. Perform a line reset. See Figure B4-9 on page B4-132.

2. Write to DP register 0xC, TARGETSEL, where the data indicates the selected target. The target response must
be ignored. See Figure B4-9 on page B4-132.

3. Read from the DP register 0x0, DPIDR, to verify that the target has been successfully selected.

SWDIOTMS

SWCLKTCK

at least 50 clocks with
SWDIOTMS HIGH

1 1 1 10 0 0 0

at least two
Idle cycles

Park

Stop

Parity

A[2:3]

RnW

APnDP

Start

line reset DP DPIDR register read
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B4-131
ID072524 Non-Confidential

B4 The Serial Wire Debug Port
B4.3 SWD interface
Figure B4-9 Line reset sequence followed by a DP TARGETSEL write

A write to the TARGETSEL register must always be followed by a read of the DPIDR register or a line reset. If the
response to the DPIDR read is incorrect, or there is no response, the host must start the sequence again.

The target is selected on receiving a line reset sequence.

After receiving a line reset sequence, if the target receives a write request to TARGETSEL that does not select the
same target, the target is deselected.

When deselected, the target ignores all accesses and must not drive the line. To select or deselect the target, a write
to TARGETSEL must immediately follow a line reset sequence. Writes to TARGETSEL at any other time are
UNPREDICTABLE.

If the target encounters a protocol error, it becomes deselected. Specifically, it does not respond to a read of the
DPIDR register.

For more information, including the required behavior of the target during the response phase of the write to the
TARGETSEL register, see Sticky flags and DP error responses on page B1-43.

A parity error in the data phase of a write to the TARGETSEL register does not set the CTRL/STAT.WDATAERR
bit to 0b1. A parity error in the data phase of a write to the TARGETSEL register is treated as a protocol error.

Accesses to the TARGETSEL register are not affected by the state of the CTRL/STAT.{WDATAERR,
STICKYERR, STICKYCMP, STICKYORUN} bits.

Implementations of SWD protocol version 2 must also support dormant operation. See Dormant operation on
page B5-139.

SWDIOTMS

SWCLKTCK

1 0 0 10 1 1 0

Park
Stop

Parity
A[2:3]

RnW
APnDP

Start

five cycles
not driven

WDATA[0:31]

at least 50
cycles
HIGH

Par

at least two
Idle cycles
B4-132 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Chapter B5
The Serial Wire/JTAG Debug Port

This chapter describes multiple protocol interoperability as implemented in the Serial Wire/JTAG Debug Port
(SWJ-DP) CoreSight component. It contains the following sections:

• About the SWJ-DP on page B5-134.

• Switching between SWD and JTAG on page B5-136.

• Dormant operation on page B5-139.

• Restrictions on switching between operating modes on page B5-146.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B5-133
ID072524 Non-Confidential

B5 The Serial Wire/JTAG Debug Port
B5.1 About the SWJ-DP
B5.1 About the SWJ-DP

The SWJ-DP interface provides a mechanism to select between SWD and JTAG Data Link protocols. This enables
the DP to provide JTAG and SWD connections while making efficient use of package pins through sharing, or
overlaying, pins.

Implementing an SWJ-DP enables a SoC to connect to legacy JTAG equipment without the need to change the DP
design. If an SWD tool is available, the JTAG interface is not needed, and only two pins are required, instead of the
four or five used for JTAG. This frees up some pins for alternative use. See also Limitations when reusing pins.

B5.1.1 SWJ-DP structure

The SWJ-DP comprises both an SW-DP and a JTAG-DP. It selects either the SW-DP or the JTAG-DP as the
interface to the ADI, and switches between the SWD and JTAG Data Link protocols. Switching is achieved by
routing the shared pins as shown in Table B5-1.

The mechanism for switching between SWD and JTAG is described in Switching from JTAG to SWD operation on
page B5-137.

Note

While the DP is in SWD mode, the JTAG pins TDI, TDO, and nTRST are expected to be reused.

An SWJ-DP can be implemented in a package where the JTAG pins TDI, TDO, and nTRST are not connected
because an SWJ-DP does not need these JTAG pins to switch the DP to SWD mode.

The following rules apply to SWJ-DP implementations:

• There is no requirement to implement separate SW-DP and JTAG-DP blocks within the SWJ-DP.

• The number, type and location of APs accessed by the SWJ-DP must not depend on whether the SW-DP or
the JTAG-DP is selected, and each DP type must access the same debug resources. There is no requirement
to implement these APs as shared APs.

For this reason, tools must not rely on the state of a DP or any AP it accesses to persist when the other DP is
selected. After switching DPs, the debugger must re-initialize the DP, which includes setting the
CTRL/STAT.{CDBGPWRUPREQ, CSYSPWRUPREQ} bits correctly.

• The JTAG-DP and SW-DP programmers’ models do not have to implement the same DP architecture
version. See Chapter B1 About the DP.

• If the JTAG protocol is never used, a pull-down on TDI at the target is required.

B5.1.2 Limitations when reusing pins

If the JTAG pins on the SWJ-DP interface are not used, they can be reused. There is, however, a trade-off between
the number of pins that are used and compatibility with existing hardware and test equipment.

In the following situations the use of a JTAG debug interface must be maintained:

• The DP is included in an existing scan chain, which is often true for on-chip TAPs used for testing or other
purposes.

Table B5-1 Routing of SWJ-DP pins

SWJ-DP pin SW-DP pin JTAG-DP pin

SWDIOTMS SWDIO TMS

SWDCLKTCK CLK TCK

TDO - TDO

TDI - TDI

TRSTn - TRSTn (optional)
B5-134 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B5 The Serial Wire/JTAG Debug Port
B5.1 About the SWJ-DP
• The device must be enabled to be cascaded with legacy devices which use JTAG for debug, although this
requirement can also be supported using a JTAG-AP.

• There is a requirement to use existing debug hardware with the corresponding test TAPs, for example, in
Automatic Test Equipment (ATE).

The following must be observed:

• When reusing pins, there must be no conflict with their use in JTAG operation.

• To support use of SWJ-DP in a scan chain with other JTAG devices, the default behavior after a DP reset
must be to transition any reused pins from their alternative function to their JTAG function, if the direction
of the alternative function is compatible with being driven by a JTAG debug device. The transition of the
JTAG TAP to the Shift-DR or Shift-IR state can be used for this transition.

• The alternate function of reused pins cannot be used while the SoC is being used in JTAG operation.

• The switching scheme must enable a JTAG debugger to connect by sending a specific sequence, provided
there is no conflict on the TDI and TDO pins.

• The connection sequence that is used for SWD must be safe when applied to the JTAG interface, even when
hot-plugged, to enable the debugger to continually retry its access sequence.

• A sequence with TMS HIGH must ensure that all parts of the SWJ-DP are in a known reset state.

• The pattern that selects SWD must have no effect on JTAG devices.

• An SWJ-DP implementation must be compatible with a free-running TCK, or a gated clock, that is supplied
by the external tools.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B5-135
ID072524 Non-Confidential

B5 The Serial Wire/JTAG Debug Port
B5.2 Switching between SWD and JTAG
B5.2 Switching between SWD and JTAG

SWJ-DP enables either an SWD or JTAG protocol to be used on the debug port. This section describes in detail how
the switching mechanism is implemented and how to switch between the two interfaces.

B5.2.1 The Switching Mechanism

The implementation uses a watcher circuit that detects a specific 16-bit select sequence on SWDIOTMS:

• A 16-bit sequence to switch from JTAG to SWD operation.

• A 16-bit sequence to switch from SWD to JTAG.

Note

Arm deprecates use of these sequences on devices where the dormant state of operation is implemented, and
recommends using a transition through dormant state instead. For more information, see Dormant operation on
page B5-139.

SWJ-DP defaults to JTAG operation on powerup reset and therefore the JTAG protocol can be used from reset
without sending a select sequence.

Switching from one protocol to the other can only occur when the selected interface is in its reset state. The JTAG
TAP state machine must be in its Test-Logic-Reset (TLR) state and the SWD interface must be in line-reset. The
powerup reset state for a JTAG TAP state machine is the Test-Logic-Reset state.

Having detected a switching sequence, SWJ-DP does not detect more sequences until after a reset condition. If
JTAG is selected, the JTAG TAP state machine being in the TLR state is the reset condition. If SWD is selected, a
line reset is the reset condition.

Figure B5-1 is a simplified state diagram that shows how SWJ-DP transitions between selected, detecting, and
selection states.

Figure B5-1 SWD and JTAG select state diagram

JTAG-Sel
TLR

SW-Sel
detecting

JTAG-Sel
detecting

SW-Sel
reset

JTAG-Sel
selected

SW-Sel
selected

SWD-to-JTAG
sequence
complete

SWDIOTMS
LOW

initial state

sequence
mismatch

line reset

JTAG-to-SWD
sequence
complete

sequence
mismatch

JTAG-DP in TLR

SWDIOTMS
LOW
B5-136 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B5 The Serial Wire/JTAG Debug Port
B5.2 Switching between SWD and JTAG
Note

In Figure B5-1 on page B5-136:

• The JTAG-to-SWD sequence terminates in the SW-Sel reset state.

• The SWD-to-JTAG sequence terminates in the JTAG-Sel TLR state.

The recommended sequences end with a reset sequence for the selected state, to ensure that the target is in the
relevant reset state.

The following applies to the preservation of the programmed state of a DP when switching from one protocol to
another and back again:

• For ADIv5 or earlier, the programmed state of the original DP might be preserved.

• For ADIv6 or later, the state of the DP registers after a switch is UNKNOWN, and they must be programmed
by the debugger before initiating any AP transactions. Programming the DP registers might include clearing
any sticky errors.

B5.2.2 Switching from JTAG to SWD operation

To switch SWJ-DP from JTAG to SWD operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the current
interface is in its reset state. The JTAG interface only detects the 16-bit JTAG-to-SWD sequence starting
from the Test-Logic-Reset state.

2. Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS.

3. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that if SWJ-DP was
already in SWD operation before sending the select sequence, the SWD interface enters line reset state.

The 16-bit JTAG-to-SWD select sequence is 0b0111 1001 1110 0111, most-significant-bit (MSB) first. This sequence
can be represented as one of the following:

• 0x79E7, transmitted MSB first.

• 0xE79E, transmitted least-significant-bit (LSB) first.

Figure B5-2 on page B5-138 shows the interface timing.

Figure B5-2 on page B5-138 shows the JTAG-to-SWD sequence begins immediately after the 50 cycles with
SWDIOTMS HIGH. Unlike a normal line reset, the two cycles with SWDIOTMS low are not allowed.

This sequence has been chosen to ensure that the SWJ-DP switches to using SWD whether it was previously
expecting JTAG or SWD. As long as the 50 cycles with SWDIOTMS HIGH sequence is sent first, the
JTAG-to-SWD select sequence does not affect any of the following:

• SW-DP.

• The SWD and JTAG protocols that are used in the SWJ-DP.

• Any other TAP Controllers that might be connected to SWDIOTMS.

On selecting SWD operation, the SWD interface is in a reset state. See Connection and line reset sequence on
page B4-130.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B5-137
ID072524 Non-Confidential

B5 The Serial Wire/JTAG Debug Port
B5.2 Switching between SWD and JTAG
Figure B5-2 JTAG-to-SWD sequence timing

B5.2.3 Switching from SWD to JTAG operation

To switch SWJ-DP from SWD to JTAG operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the current
interface is in its reset state. The SWD interface only detects the 16-bit SWD-to-JTAG sequence when it is
in the reset state.

2. Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS.

3. Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that if SWJ-DP
was already in JTAG operation before sending the select sequence, the JTAG TAP enters the
Test-Logic-Reset state.

The 16-bit SWD-to-JTAG select sequence is 0b0011 1100 1110 0111, MSB first. This sequence can be represented as
either of the following:

• 0x3CE7, transmitted MSB first

• 0xE73C, transmitted LSB first.

Figure B5-3 shows the SWD-to-JTAG sequence timing.

This sequence has been chosen to ensure that the SWJ-DP switches to using JTAG independent of whether it was
previously expecting JTAG or SWD. If the SWDIOTMS HIGH sequence is sent first, the JTAG-to-SWD select
sequence does not affect any of the following:

• SW-DP.

• The SWD and JTAG protocols that are used in the SWJ-DP.

• Any other TAP Controllers that might be connected to SWDIOTMS.

Figure B5-3 shows that the SWD-to-JTAG sequence begins immediately after the 50 cycles with SWDIOTMS
HIGH. Unlike a normal line reset, the two cycles with SWDIOTMS LOW are not present.

Figure B5-3 SWD-to-JTAG sequence timing

At least 50 clocks
With SWDIOTMS

HIGH

At least 50 clocks
With SWDIOTMS

HIGH

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

JTAG-to-SWD sequence

SWCLKTCK

SWDIOTMS

At least
50 clocks with
SWDIOTMS

HIGH

At least
5 clocks with
SWDIOTMS

HIGH

0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1

SWD-to-JTAG sequence

SWCLKTCK

SWDIOTMS
B5-138 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B5 The Serial Wire/JTAG Debug Port
B5.3 Dormant operation
B5.3 Dormant operation

An alternative to the selection mechanism for switching between JTAG and SWD operation that is described in
Switching between SWD and JTAG on page B5-136 is the dormant state of operation.

To switch between JTAG and SWD operation, a debugger must first place the target into dormant state, and then
transition to the required operating state.

Using dormant state allows the target to be placed into a quiescent mode, allowing devices to inter-operate with
other devices implementing other protocols. Those other protocols must also implement a quiescent state, with a
mechanism for entering and leaving that state that is compatible, but not necessarily compliant, with the SWJ-DP
and SW-DP protocols.

Dormant operation is required by SWJ-DP and SW-DP implementations that implement SWD protocol version 2.
SWD protocol version 2 is described in Chapter B4 The Serial Wire Debug Port. Otherwise, support for dormant
state is IMPLEMENTATION DEFINED. In the dormant state, the target must ignore any stimulus, with any timing, other
than a defined Selection Alert sequence.

The Selection Alert sequence must be followed by a protocol-specific Activation code.

Selection of dormant state is possible when either JTAG or SWD operation is selected.

Figure B5-4 extends the state diagram of Figure B5-1 on page B5-136 to include selection of dormant state, for an
SWJ-DP implementation.

Figure B5-4 SWJ-DP selection of JTAG, SWD, and dormant states

Note

Following the DS-to-JTAG activation code, the JTAG TAP is in either the Test-Logic-Reset state or Run-Test/Idle
state, and therefore this state machine is in either the JTAG-Sel TLR state or the JTAG-Sel selected state. Normally,
the TAP state that the state machine returns to is the TAP state it left from. However, it is also possible to reset the
JTAG TAP state machine when JTAG is not the selected protocol. To ensure that the TAP is in the Run-Test/Idle
state, Arm recommends that the DS-to-JTAG sequence is followed by a single clock with SWDIOTMS LOW.

The DS-to-SWD sequence is shown terminating in the SW-Sel reset state. The recommended sequence ends with a
line reset to ensure that the target is in the reset state.

JTAG-Sel
TLR

SW-Sel
detecting

JTAG-Sel
detecting

SW-Sel
reset

JTAG-Sel
selected

SW-Sel
selected

SWD-to-JTAG
sequence complete,

deprecated

SWDIOTMS
LOW

initial state

sequence
mismatch

line reset

JTAG-to-SWD
sequence complete,

deprecated

sequence
mismatch

JTAG-DP in TLR

SWDIOTMS
LOW

Activation
Code

Dormant

Unrecognized
code

Selection
Alert

DS-to-SWD
activation code

complete

DS-to-JTAG
activation code

complete,
see note

SWD-to-DS
sequence
complete

JTAG-to-DS
sequence
complete

Deprecated state change
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B5-139
ID072524 Non-Confidential

B5 The Serial Wire/JTAG Debug Port
B5.3 Dormant operation
B5.3.1 Using the dormant state outside of SWJ-DP

An SWD device that does not implement JTAG can nevertheless implement dormant state and inter-operate with
SWJ-DP and other JTAG devices that also implement dormant state. In this case:

• The operating mode selection state machine is simplified.

• The initial state, entered on a powerup reset, is the dormant state.

Figure B5-5 shows the state diagram for an SW-DP that implements protocol version 2, meaning it supports
dormant operation.

Figure B5-5 SW-DP selection of SWD, and dormant states

The dormant state enables multi-drop SWJ-DP, SW-DP, and JTAG TAPs to share a physical connection to a host,
as shown in Figure B5-6. These different devices can be in different physical packages, or on different dies in a
single package, or on a single die.

Figure B5-6 Multiple JTAG, SW, SWJ (multi-drop), and other protocol devices on shared connection

SW-Sel
detecting

SW-Sel
reset

SW-Sel
selected

initial state

SWD-to-DS
sequence
mismatch

line reset

SWDIOTMS
LOW

Activation
Code

Dormant

Unrecognized
code

Selection
Alert

DS-to-SWD
activation code

complete

SWD-to-DS
sequence
complete

Other
protocol

TMS
TCK
TDI

TDO

D
at

a

C
lo

ck

SWJ-DP
(multi-drop)

SW
D

IO

SW
C

LK

JTAG TAP

TM
S

TC
K

TD
I

TD
O

JTAG TAP

TM
S

TC
K

TD
I

TD
O

SWJ-DP
(multi-drop)

SW
D

IO

SW
C

LK

TD
O

TD
I

wrapper

SW-DP
(multi-drop)

SW
D

IO

SW
C

LK

TD
I

VSS
wrapper
B5-140 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B5 The Serial Wire/JTAG Debug Port
B5.3 Dormant operation
B5.3.2 Switching from JTAG to dormant state

To switch from JTAG to dormant state, a debugger must:

1. Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This sequence places the JTAG TAP state
machine into the Test-Logic-Reset state, and selects the IDCODE instruction.

2. Send the recommended 31-bit JTAG-to-DS select sequence on SWDIOTMS.

The recommended 31-bit JTAG-to-DS select sequence is 0b010_1110_1110_1110_1110_1110_1110_0110, MSB first.
This sequence can be represented as either:

• 0x2EEEEEE6 transmitted MSB first, that is, starting from bit 30.

• 0x33BBBBBA transmitted LSB first.

Figure B5-7 Recommended JTAG-to-DS sequence timing

Requirements for implementations

The JTAG-to-DS sequence is the shortest sequence that switches from JTAG-to-DS. For compatibility with other
standards, all JTAG devices that implement dormant state must recognize other sequences as valid JTAG-to-DS
select sequences.

The full sequence is defined around the concept of a zero-bit-DR-scan (ZBS or ZBS scan) which is in turn defined
by transitions of the JTAG TAP state machine. A ZBS is defined as any JTAG TAP state machine sequence that
starts at Capture-DR and ends in Update-DR without passing through Shift-DR.

Examples of a ZBS are:

• Capture-DR Exit1-DR Update-DR

• Capture-DR Exit1-DR Pause-DR … Pause-DR Exit2-DR Update-DR

The sequence also uses the ZBS count, which is defined as follows:

• If the TAP state machine enters either the Select-IR-Scan or TLR state, the ZBS count is unlocked and reset
to zero. This includes asynchronously entering TLR following assertion of nTRST. At reset, the ZBS count
is unlocked and reset to zero.

• On entering Update-DR at the end of a ZBS scan, if the ZBS count is unlocked and less than seven, it is
incremented by one.

• The counter does not increment past seven. On entering Update-DR at the end of a ZBS scan, if the ZBS
count is unlocked and equal to seven, it is not incremented. The count does not wrap to zero.

• The ZBS count is locked if the TAP state machine enters the Shift-DR state and the ZBS count is not zero.

The JTAG-to-DS sequence is defined as any sequence of TAP state machine transitions that terminates in the
Run-Test/Idle state with a locked ZBS count of six. On entering Run-Test/Idle, the target is placed into Dormant
State (DS).

The behavior of the target on entering Run-Test/Idle with other locked ZBS counts is IMPLEMENTATION DEFINED.

At least
5 clocks with
SWDIOTMS

HIGH

0 1 0 1 1 1 0 ... 1 1 0 0 1 1 0

JTAG-to-DS sequence

SWCLKTCK

SWDIOTMS
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B5-141
ID072524 Non-Confidential

B5 The Serial Wire/JTAG Debug Port
B5.3 Dormant operation
Although the recommended JTAG-to-DS sequence starts by placing the JTAG TAP state machine in the
Test-Logic-Reset state, this transition is not required for recognizing the JTAG-to-DS sequence. Tools must,
however, ensure that the Instruction Register (IR) is loaded with either the BYPASS or IDCODE instruction before
placing the target into the dormant state. If the IR is not loaded with either of these instructions when the target is
put into dormant state, the behavior is unpredictable.

The pseudocode function EnterDormantState describes the function of the JTAG-to-DS sequence detector. It is
notionally called on every TAP state machine transition. The function takes the state being entered as an argument,
and returns a Boolean that indicates whether dormant state must be entered.

For details of the pseudocode language, see Chapter J1, Armv8 Pseudocode of the Arm® Architecture Reference
Manual, for A-profile architecture.

enumeration TAPState {
 TestLogicReset, RunTestIdle,
 SelectDRScan, CaptureDR, ShiftDR, Exit1DR, PauseDR, Exit2DR, UpdateDR,
 SelectIRScan, CaptureIR, ShiftIR, Exit1IR, PauseIR, Exit2IR, UpdateIR};

boolean shiftDRflag = FALSE;
integer ZBScount = 0;
boolean ZBSlocked = FALSE;

// EnterDormantState()
// ===================

boolean EnterDormantState(TAPState state)
 case state of
 when CaptureDR
 shiftDRflag = FALSE;
 when ShiftDR
 shiftDRflag = TRUE;

 if ZBScount != 0 then ZBSlocked = TRUE;
 when UpdateDR
 if !ZBSlocked && !shiftDRflag && ZBScount < 7 then
 ZBScount = ZBScount + 1;
 when SelectIRScan, TestLogicReset
 ZBScount = 0; ZBSlocked = FALSE;
 return state == RunTestIdle && ZBSlocked && ZBScount == 6;

Note

If the JTAG-to-DS sequence is terminated by entering the Test-Logic-Reset state, an SWJ-DP can immediately
detect a JTAG-to-SWD sequence.

B5.3.3 Switching from SWD to dormant state

To switch from SWD to dormant state:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the SWD
interface is in the reset state. The target only detects the SWD-to-DS sequence when it is in the reset state.

2. Send the 16-bit SWD-to-DS select sequence on SWDIOTMS.

The 16-bit SWD-to-DS select sequence is 0b0011_1101_1100_0111, MSB first. This sequence can be represented
as either:

• 0x3DC7 transmitted MSB first.

• 0xE3BC transmitted LSB first.

Figure B5-8 on page B5-143 shows that the SWD-to-DS sequence begins immediately after the 50 cycles with
SWDIOTMS HIGH. Unlike a normal line reset, the two cycles with SWDIOTMS LOW are not present.
B5-142 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B5 The Serial Wire/JTAG Debug Port
B5.3 Dormant operation
Figure B5-8 SWD-to-DS sequence timing

B5.3.4 Leaving dormant state

To ensure that the probability for any protocol being used to accidentally signal the DP to leave the dormant state
is low, the sequence for leaving the dormant state is considerably longer than the sequence for entering it.

To signal the DP to leave the dormant state:

1. Send at least eight SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the target is
not in the middle of detecting a Selection Alert sequence. The target is permitted to detect the Selection Alert
sequence even if this 8-cycle sequence is not present.

2. Send the 128-bit Selection Alert sequence on SWDIOTMS.

3. Send four SWCLKTCK cycles with SWDIOTMS LOW. The target must ignore the value on SWDIOTMS
during these cycles.

4. Send the required activation code sequence on SWDIOTMS.

5. Send a sequence to place the target into a known state

• If selecting JTAG, the target is in either the Run/Test Idle or TLR states, see the Note that follows
Figure B5-4 on page B5-139 for more information. Arm recommends that the debugger sends one
SWCLKTCK cycle with SWDIOTMS LOW, to ensure that the TAP state machine is in the
Run-Test/Idle state. Alternatively, send at least five SWCLKTCK cycles with SWDIOTMS HIGH
to ensure that the TAP state machine is in the Test-Logic/Reset state.

• If selecting SWD, the target is in the protocol error state. The debugger must send at least 50
SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the SWD interface is in
the line reset state.

Note

The Activation code selects a protocol, not a target. In a multidrop SWD system with multiple SW-DPs, a
target must then be selected. For more information, see Target selection protocol, SWD protocol version 2 on
page B4-131.

The Selection Alert sequence, in binary, is

0100_1001_1100_1111_1001_0000_0100_0110_1010_1001_1011_0100_1010_0001_0110_0001_
1001_0111_1111_0101_1011_1011_1100_0111_0100_0101_0111_0000_0011_1101_1001_1000

This sequence is sent MSB first. This sequence can be represented as either:

• 0x49CF9046 A9B4A161 97F5BBC7 45703D98 transmitted MSB first.

• 0x19BC0EA2 E3DDAFE9 86852D95 6209F392 transmitted LSB first.

At least
50 clocks with
SWDIOTMS

HIGH

0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1

SWD-to-DS sequence

SWCLKTCK

SWDIOTMS
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B5-143
ID072524 Non-Confidential

B5 The Serial Wire/JTAG Debug Port
B5.3 Dormant operation
Figure B5-9 Selection Alert sequence

Note

The Selection Alert sequence can be generated by implementing a Linear Feedback Shift Register (LFSR)
implementing feedback on bits 6, 5, 3 and 0, starting in the state 0b1001001 and shifting out one bit from bit 0 each
cycle. The sequence starts with a zero start bit and continues with the output of the LFSR.

Figure B5-10 LSFR for generating Selection Alert sequence

The value of the activation code depends on whether SWD or JTAG operation is to be requested. Table B5-2 defines
the activation codes that a debugger must use for JTAG devices, SW-DP devices, and SWJ-DP devices. These
sequences are sent MSB first.

JTAG online activation codes

For compatibility with other standards, all JTAG devices that implement dormant state using the ADIv6 defined
selection alert sequence, must recognize other sequences as valid JTAG-Serial activation codes.

Figure B5-11 on page B5-145 shows, as a state diagram, the sequence that a JTAG device must recognize.

SWCLKTCK

SWDIOTMS

At least 8 cycles
with SWDIOTMS

HIGH

0 1 0 0 1 0 ... 0 1 1 0 0 0

Selection Alert sequence
(128 cycles)

(0)(0) (0) (0)

4 cycles with
SWDIOTMS

LOW

Activation
code

Selected
technology

1 0 0 1 10 0

Selection
Alert

sequence

Table B5-2 Activation codes

Activation code Value, MSB first Devices activated Protocol
selected

Other
JTAG

ADI Debug Ports

JTAG SW SWJ

JTAG-Serial 0b0000_0000_0000 Yes Yes No Yes JTAG

Arm CoreSight SW-DP 0b0101_1000 No No Yes Yes SWD

Arm CoreSight JTAG-DP 0b0101_0000 No Yes No Yes JTAG
B5-144 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

B5 The Serial Wire/JTAG Debug Port
B5.3 Dormant operation
Figure B5-11 Dormant to JTAG state diagram

Each of the bit-strings that are shown in Figure B5-11 are received MSB first. The transition out of state G2 requires
a reset of the JTAG TAP, but otherwise returns to dormant state. For more information on this sequence, contact
Arm.

Note

ADIv6 does not define any other activation codes, but also does not prohibit an implementation from recognizing
other activation codes for compatibility with other standards. Implementations can also use alternative selection
alert mechanisms. Debuggers can generate multiple selection alert sequences to alert multiple devices, and then use
the common activation codes to select which devices to activate.

Dormant A

<128-bit-seq>

B

xxxx

C

00x0 00x

E

x

1

0

x

other

1

0

0

0

1

JTAG-Sel

x

Selection Alert Sequence Extended JTAG Activation Code

0101 xxxx

Arm CoreSight
activation codes

D2

D1

F2

F1

G1

G21 xxxxxxxx xxxxxxxx xxxxxxxx
JTAG TAP

reset
(see text)

x

ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. B5-145
ID072524 Non-Confidential

B5 The Serial Wire/JTAG Debug Port
B5.4 Restrictions on switching between operating modes
B5.4 Restrictions on switching between operating modes

A debugger must not mix JTAG-DP and SW-DP reads and writes of ADI registers in a single debug session. A
single debug session is defined as from when a debugger connection is made with the system in a reset state through
to the debugger connection being broken. At the start of a debug session, the state of the target is UNKNOWN.

Attempting to mix JTAG-DP and SW-DP reads and writes of ADI registers while any component of the ADI is
active can have unpredictable results.

A powerup reset cycle might be required to reset the ADI implementation before a change in active Data Link
protocol. However, this cycle is not required when switching between the active protocol and dormant state.
B5-146 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Part C
The Access Port

Chapter C1
About the AP

An ADI implementation can include multiple APs.

This chapter gives an overview of APs, and describes the features that must be implemented by every AP. It contains
the following sections:

• AP requirements on page C1-150.

• Selecting and accessing an AP on page C1-151.

• AP Programmers’ Model Summary on page C1-152.

The following chapters provide two AP definitions:

• Chapter C2 The Memory Access Port.

• Chapter C3 The JTAG Access Port.

Designers can use the ADI architecture specification to implement other APs.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-149
ID072524 Non-Confidential

C1 About the AP
C1.1 AP requirements
C1.1 AP requirements

An ADI implementation can have multiple APs, and use a mixture of AP types.

Note

This specification permits an ADI implementation to include AP types that are not defined in the specification, even
if such an AP is the only AP. A debugger must be able to detect any AP, and must ignore any AP that it does not
recognize.

All APs must observe the following requirements:

• Every AP must implement an Identification Register as described in AP Programmers’ Model Summary on
page C1-152. This identification model is required for implementations of the MEM-AP and JTAG-AP
implementations that are defined by Arm, by any future Arm AP implementations, and by any APs that might
be implemented by any third party.

• Any AP must support accesses by the implemented DP, as described in Using the AP to access debug
resources on page A1-31. A summary of how to access an AP is given in Selecting and accessing an AP on
page C1-151.

• For all APs, reserved registers must be RES0. This requirement applies to all APs, including any implemented
by companies other than Arm.

The implementation of the ABORT mechanism is optional and IMPLEMENTATION DEFINED. Arm recommends that
all APs implement the following functionality to handle abort requests:

• APs must be able to receive an abort request, and, on receipt of an abort request, respond to an outstanding
transaction in finite time.

• An abort request from the DP is sent to all APs that are directly accessible by the DP, unless the AP is powered
down.

There are no other requirements for APs in the ADIv6 specifications. All features that are provided by an AP can
be IMPLEMENTATION DEFINED.
C1-150 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.2 Selecting and accessing an AP
C1.2 Selecting and accessing an AP

Any APACC request to a MEM-AP, a JTAG-AP, or an AP not defined by this specification must be answered by
the DP according to the following addressing scheme:

• The value of the SELECT.ADDR and SELECT1.ADDR fields must be used to select an AP, and which
four-register bank of AP registers in the selected AP is accessed.

• The A[3:2] field that is passed in the APACC access must be used to select the AP register within the selected
four-register bank.

• The RnW field for the APACC access must be used to determine whether the AP register access is a read
access or a write access.

For detailed information about DP support for APACC accesses, see Chapter B3 The JTAG Debug Port and
Chapter B4 The Serial Wire Debug Port.

Examples of implementations of APACC accesses are shown in Figure C2-1 on page C2-173 for a MEM-AP, and
Figure C3-1 on page C3-244 for a JTAG-AP.

C1.2.1 Stalling accesses

AP interfaces can support stalling accesses, which enable the AP to be connected to slow devices, such as a memory
system or a long JTAG scan chain. In this way, the AP is in a pending state, and the access does not have to complete
within a fixed number of cycles, which is important because often an AP access cannot complete until the associated
memory access or JTAG scan has completed. For more information, see:

• Stalling accesses on page C2-181, for stalling accesses to a MEM-AP.

• Stalling accesses on page C3-250, for stalling accesses to a JTAG-AP.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-151
ID072524 Non-Confidential

C1 About the AP
C1.3 AP Programmers’ Model Summary
C1.3 AP Programmers’ Model Summary

This section describes the APv2 programmers’ model, which must be implemented by all APs in an ADIv6
implementation.

An APv2 AP is a Class 0x9 CoreSight component with a register map of 4KB. A common programmers’ model for
all APv2 APs is defined in Table C1-1. For information about the programmers’ model for specific AP
implementations, see Chapter C2 The Memory Access Port and Chapter C3 The JTAG Access Port.

Table C1-1 Common APv2 programmers’ model

Offset Type Name Description

Area that is defined by the AP

0x000 - 0xDF8 - - IMPLEMENTATION DEFINED

AP Identification

0xDFC RO IDR Identification Register.

Area that is defined by the AP

0xE00 - 0xEFC - - IMPLEMENTATION DEFINED

CoreSight management registers

0xF00 RW ITCTRL Integration Mode Control Register.

0xF04-0xF9C - - RES0.

0xFA0 RW CLAIMSET Claim Tag Registers.

0xFA4 RW CLAIMCLR

0xFA8 RO DEVAFF0 Device Affinity Registers.

0xFAC RO DEVAFF1

0xFB0 WO LAR Lock Access and Lock Status Registers.

0xFB4 RO LSR

0xFB8 RO AUTHSTATUS Authentication Status Register.

0xFBC RO DEVARCH Device Architecture Register.

0xFC0 RO DEVID2 Device ID Registers.

0xFC4 RO DEVID1

0xFC8 RO DEVID Device ID Register.

0xFCC RO DEVTYPE Device Type Register.

0xFD0-0xFDC RO PIDR4-PIDR7 Peripheral Identification Registers.

0xFE0-0xFEC RO PIDR0-PIDR3

0xFF0-0xFFC RO CIDR0-CIDR3 Component Identification Registers.
C1-152 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.4 AP Register Descriptions
C1.4 AP Register Descriptions

C1.4.1 AUTHSTATUS, Authentication Status Register

The AUTHSTATUS characteristics are:

Purpose

Reports the required security level and status of the authentication interface. Where functionality
changes on a given security level, the change in status must be reported in this register.

The effect of each debug level being enabled or disabled is specific to each AP.

Usage constraints

AUTHSTATUS is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The AUTHSTATUS bit assignments are:

Bits[31:28]

RES0. For more information, see Arm® CoreSight™ Architecture Specification.

RTNID, bits[27:26]

Root non-invasive debug. For more information, see Arm® CoreSight™ Architecture Specification.

RTID, bits[25:24]

Root invasive debug. For more information, see Arm® CoreSight™ Architecture Specification.

SUNID, bits[23:22]

Secure Unprivileged non-invasive debug. For more information, see Arm® CoreSight™ Architecture
Specification.

SUID, bits[21:20]

Secure Unprivileged invasive debug. For more information, see Arm® CoreSight™ Architecture
Specification.

NSUNID, bits[19:18]

Non-secure Unprivileged non-invasive debug. For more information, see Arm® CoreSight™
Architecture Specification.

Default

RO

RES0 RTNID RTID SUNID SUID

NSUNID

NSUID RLNID RLID

01

NSID

2567

SID

89

SNID

NSNID

1011

HID

1231 141516171825262728 2423 22 13192021

HNID

34
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-153
ID072524 Non-Confidential

C1 About the AP
C1.4 AP Register Descriptions
NSUID, bits[17:16]

Non-secure Unprivileged invasive debug. For more information, see Arm® CoreSight™
Architecture Specification.

RLNID, bits[15:14]

Realm non-invasive debug. For more information, see Arm® CoreSight™ Architecture
Specification.

RLID, bits[13:12]

Realm invasive debug. For more information, see Arm® CoreSight™ Architecture Specification.

HNID, bits[11:10]

Hypervisor non-invasive debug. For more information, see Arm® CoreSight™ Architecture
Specification.

HID, bits[9:8]

Hypervisor invasive debug. For more information, see Arm® CoreSight™ Architecture
Specification.

SNID, bits[7:6]

Secure non-invasive debug. For more information, see Arm® CoreSight™ Architecture
Specification.

SID, bits[5:4]

Secure invasive debug. For more information, see Arm® CoreSight™ Architecture Specification.

NSNID, bits[3:2]

Non-secure non-invasive debug. For more information, see Arm® CoreSight™ Architecture
Specification.

NSID, bits[1:0]

Non-secure invasive debug. For more information, see Arm® CoreSight™ Architecture
Specification.

Accessing AUTHSTATUS

AUTHSTATUS can be accessed at the following address:

C1.4.2 CIDR0-CIDR3, Component Identification Registers

This section describes the bit assignments for AP components. For a full description of the CIDR registers, see
CIDR0-CIDR3 registers in Arm® CoreSight™ Architecture Specification.CIDR1CIDR2

The CIDR0-CIDR3 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

Offset

0xFB8
C1-154 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.4 AP Register Descriptions
CIDR0-CIDR3 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Four 32-bit management registers.

Field Descriptions

The CIDR0-CIDR3 bit assignments are:

CIDR3 bits[31:8]

RES0.

PRMBL_3, CIDR3 bits[7:0]

0xB1.

CIDR2 bits[31:8]

RES0.

PRMBL_2, CIDR2 bits[7:0]

0x05.

CIDR1 bits[31:8]

RES0.

CLASS, CIDR1 bits[7:4]

0x9 CoreSight component.

PRMBL_1, CIDR1 bits[3:0]

0x0.

Default

RO

31 0

RES0 0xB1

8 7

CIDR3 0xFFC

31 0

RES0 0x05

8 7

CIDR2 0xFF8

31 0

RES0 0x0

8 7

0x9

4 3

CIDR1 0xFF4

31 0

RES0 0x0D

8 7

CIDR0 0xFF0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-155
ID072524 Non-Confidential

C1 About the AP
C1.4 AP Register Descriptions
CIDR0 bits[31:8]

RES0.

PRMBL_0, CIDR0 bits[7:0]

0x0D.

Accessing CIDR0-CIDR3 registers

CIDR0-CIDR3 can be accessed at the following address:

C1.4.3 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register

The CLAIMSET and CLAIMCLR characteristics are:

Purpose

The claim tags are used to communicate between different debug agents and to claim usage of an
APv2 AP.

Often there are several debug agents that must cooperate to control the resources that the CoreSight
components make available. For example, an external debugger and a debug monitor running on the
target might both require control of the breakpoint resources of a PE. It is important that a debug
agent does not reprogram debug resources that another debug agent is using.

The claim tag registers provide various bits that can be separately set and cleared to indicate whether
functionality is in use by a debug agent. All debug agents must implement a common protocol to
use these bits.

For an AP, Arm recommends that a minimum of two claim tag bits are implemented, with the
following usage:

• Claim tag bit 0 is used by self-hosted software to indicate that it is using the AP.

• Claim tag bit 1 is used by an external debugger to indicate that it is using the AP.

Arm recommends implementing claim tag 0 for use by self-hosted software to indicate that it is
using the AP. When an agent that uses claim tag 0 is setting claim tag 0, it must verify that claim tag
1 is not set. If claim tag 1 is set, the agent must clear claim tag 0. The debug agent must only use the
AP if only its claim tag is set. When a debug agent finishes using the AP, it must clear its claim tag.

Arm recommends implementing claim tag 1 for use by an external debugger to indicate that it is
using the AP. When an agent that uses claim tag 1 is setting claim tag 1, it must verify that claim tag
0 is not set. If claim tag 0 is set, the agent must clear claim tag 1. The debug agent must only use the
AP if only its claim tag is set. When a debug agent finishes using the AP, it must clear its claim tag.

For details about how to set and clear the claim tags, see the field descriptions.

Note

The recommended use of the claim tag bits may vary by debug component. Refer to the technical
documentation of the specific debug component for the recommended usage. For PE debug
components, see ARM® Debug and Trace Configuration and Usage Models (ARM DEN 0034A).

Usage constraints

Offset

CIDR0 CIDR1 CIDR2 CIDR3

0xFF0 0xFF4 0xFF8 0xFFC
C1-156 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.4 AP Register Descriptions
CLAIMSET and CLAIMCLR are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers.

Field Descriptions

The CLAIMSET and CLAIMCLR bit assignments are:

CLAIMCLR bits[31:nTags]

RAZ/WI

CLR, CLAIMCLR bits[nTags-1:0]

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of bits
set in CLAIMSET.

Allowed values of CLR[n] are:

Write 0 No effect.

Write 1 Clear the claim tag for bit[n].

Read 0 The claim tag bit is not set.

Read 1 The claim tag bit is set.

CLAIMSET bits[31:nTags]

RAZ/WI

SET, CLAIMSET bits[nTags-1:0]

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of claim
bits that are implemented.

Permitted values of SET[n] are:

Write 0 No effect.

Write 1 Set the claim tag for bit[n].

Read 0 The claim tag that is represented by bit[n] is not implemented.

Read 1 The claim tag that is represented by bit[n] is implemented.

CLAIMSET CLAIMCLR

RW RW

31 0

CLRRAZ/WI

nTags-1nTags

CLAIMCLR 0xFA4

31 0

SETRAZ/WI

nTags-1nTags

CLAIMSET 0xFA0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-157
ID072524 Non-Confidential

C1 About the AP
C1.4 AP Register Descriptions
Accessing CLAIMSET and CLAIMCLR

CLAIMSET and CLAIMCLR can be accessed at the following addresses:

C1.4.4 DEVAFF0-DEVAFF1, Device Affinity Registers

The DEVAFF0-DEVAFF1 characteristics are:

Purpose

Enables a debugger to determine whether two components have an affinity with each other.

Usage constraints

DEVAFF0-DEVAFF1 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers.

Field Descriptions

The DEVAFF0-DEVAFF1 bit assignments are:

DEVAFF0, bits[31:0]
DEVAFF1, bits[31:0]

IMPLEMENTATION DEFINED.

Offset

CLAIMSET CLAIMCLR

0xFA0 0xFA4

Default

RO

31 0

IMPLEMENTATION DEFINEDDEVAFF1 0xFAC

31 0

IMPLEMENTATION DEFINEDDEVAFF0 0xFA8
C1-158 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.4 AP Register Descriptions
Accessing DEVAFF0-DEVAFF1

The DEVAFF0-DEVAFF1 registers can be accessed at the following addresses:

C1.4.5 DEVARCH, Device Architecture Register

The DEVARCH characteristics are:

Purpose

Identifies the architect and architecture of a CoreSight component.

Usage constraints

DEVARCH is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVARCH bit assignments are:

ARCHITECT, bits[31:21]

0x23B Arm.

PRESENT, bit[20]

0b1 Present.

REVISION, bits[19:16]

0x0 Revision 0.

ARCHID, bits[15:0]

The following values are defined for APv2 architectures that are defined by Arm:

0x0A17 MEM-AP.

0x0A27 JTAG-AP.

0x0A47 Unknown AP.

Offset

DEVAFF0 DEVAFF1

0xFA8 0xFAC

Default

RO

PRESENT

31 0

ARCHIDARCHITECT 1 REVISION

21 20 19 16 15
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-159
ID072524 Non-Confidential

C1 About the AP
C1.4 AP Register Descriptions
If this value of ARCHID is found by a debugger, the debugger must use the IDR register
in the AP to determine more information about the AP. This value might occur if an AP
from a previous ADI version is adapted to appear as an APv2 AP.

Accessing DEVARCH

DEVARCH can be accessed at the following address:

C1.4.6 DEVID, Device Configuration Register

The DEVID characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

DEVID is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVID bit assignments are:

Bits[31:0]

RES0.

Accessing DEVID

DEVID can be accessed at the following address:

Offset

0xFBC

Default

RO

Offset

0xFC8

31 0

RES0
C1-160 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.4 AP Register Descriptions
C1.4.7 DEVID1-DEVID2, Device Configuration Registers

The DEVID1-DEVID2 characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

DEVID1-DEVID2 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers.

Field Descriptions

The DEVID1-DEVID2 bit assignments are:

DEVID1, bits[31:0]
DEVID2, bits[31:0]

RES0.

Accessing DEVID1-DEVID2

DEVID1-DEVID2 can be accessed at the following addresses:

C1.4.8 DEVTYPE, Device Type Register

The DEVTYPE characteristics are:

Purpose

A debugger can use DEVTYPE to obtain information about a component that has an unrecognized
Part number.

Usage constraints

Default

RO

Offset

DEVID1 DEVID2

0xFC4 0xFC0

31 0

RES0DEVID1 0xFC4

31 0

RES0DEVID2 0xFC0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-161
ID072524 Non-Confidential

C1 About the AP
C1.4 AP Register Descriptions
DEVTYPE is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVTYPE bit assignments are:

Bits[31:8]

RES0.

SUB, bits[7:4]

0x0 Other, undefined.

MAJOR, bits[3:0]

0x0 Miscellaneous.

Accessing DEVTYPE

DEVTYPE can be accessed at the following address:

C1.4.9 IDR, Identification Register

The IDR characteristics are:

Purpose

Identifies the Access Port.

Usage constraints

The value of IDR after a reset is IMPLEMENTATION DEFINED.

IDR is accessible as follows:

Configurations

Included in all implementations.

Default

RO

Offset

0xFCC

31 0

MAJORRES0

4 3

SUB

8 7

Default

RO
C1-162 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.4 AP Register Descriptions
APs that comply with the ADIv6 specification must implement the JEP106 code and
provide a value in the REVISION and CLASS fields.

Attributes

A 32-bit read-only register.

Field Descriptions

The IDR bit assignments are:

REVISION, bits[31:28]

Starts at 0x0 for the first implementation of an AP design, and increments by one on each major or
minor revision of the design. Major design revisions introduce functionality changes, minor
revisions are bug fixes.

DESIGNER, bits[27:17]

Code that identifies the designer of the AP.

This field indicates the designer of the AP and not the implementer, except where the two are the
same. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit. For example,
Arm® Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

The encoding that is used in the IDR is as follows:

• The JEP106 continuation code, IDR bits[27:24], is the number of times that 0x7F appears
before the final number. For example, for Arm Limited this field is 0x4.

• The JEP106 identification code, IDR bits[23:17], equals bits[6:0] of the final number of the
JEDEC code. For example, for Arm Limited this field is 0x3B.

Note

The JEP106 codes are assigned by JEDEC to identify the manufacturer of a device. However, in the
AP Identification register they identify the designer of the AP.

An implementer of an Arm MEM-AP or JTAG-AP must not change these AP Identification
Register values.

Note

For backwards compatibility, debuggers must treat an AP that returns a JEP106 field of zero as an
AP designed by Arm. This encoding was used in early implementations of the ADI. In such an
implementation, the REVISION and CLASS fields are also RAZ.

APs that comply with the ADIv6 specification must use the JEP106 code and provide a value in the
REVISION and CLASS fields.

CLASS, bits[16:13]

Defines the class of the AP. If an AP follows a programmers’ model that is defined as part of the
ADIv6 specification or extensions to it, it belongs to a class. This field can have the following
values:

0b0000 No defined class.

0b1000 MEM-AP See Chapter C2 The Memory Access Port.

TYPEDESIGNERREVISION

31 28 27 17 16 4 3 0

CLASS RES0 VARIANT

1213 8 7
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-163
ID072524 Non-Confidential

C1 About the AP
C1.4 AP Register Descriptions
Bits[12:8] Reserved, RES0. This field is reserved for future ID register fields. If a debugger reads a non-zero
value in this field, it must treat the AP as unidentifiable.

VARIANT, bits[7:4]

Together with the TYPE field, this field identifies the AP implementation. VARIANT differentiates
AP implementations that have the same value of TYPE.

Each AP designer must maintain their own list of implementations and associated AP Identification
codes.

TYPE, bits[3:0]

Indicates the type of bus, or other connection, that connects to the AP. Table C1-2 lists the possible
values of the Type field for an AP designed by Arm. It also shows the value of the CLASS field,
which corresponds to bits[16:13] of the IDR, for each value of TYPE.

Together with the VARIANT field, this field identifies the AP implementation. AP implementations
that have the same value of TYPE are differentiated by their VARIANT value.

Each AP designer must maintain their own list of implementations and associated AP Identification
codes.

Accessing IDR

IDR can be accessed at the following address:

C1.4.10 ITCTRL, Integration Mode Control Register

The ITCTRL characteristics are:

Purpose

A component can use ITCTRL to dynamically switch between functional mode and
integration mode.

Table C1-2 AP Identification types for an AP designed by Arm

TYPE Connection to AP CLASS Notes

0x0 JTAG connection 0b0000 VARIANT field, bits [7:4] of
IDR, must be non-zero.

0x1 AMBA AHB3 bus 0b1000 -

0x2 AMBA APB2 or APB3 bus 0b1000 -

0x4 AMBA AXI3 or AXI4 bus, with
optional ACE-Lite support

0b1000 -

0x5 AMBA AHB5 bus 0b1000 -

0x6 AMBA APB4 or APB5 bus 0b1000 -

0x7 AMBA AXI5 bus 0b1000 -

0x8 AMBA AHB5 with enhanced
HPROT

0b1000 -

Other Reserved - -

Offset

0xDFC
C1-164 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.4 AP Register Descriptions
In integration mode, topology detection is enabled.

Usage constraints

After switching to integration mode and performing integration tests or topology detection,
reset the system to ensure correct behavior of CoreSight and other connected system
components.

ITCTRL is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The ITCTRL bit assignments are:

Bits[31:1]

RES0.

IME, bits[0] Permitted values of IME are:

0 The component must enter functional mode.

1 The component must enter integration mode, and enable support for topology
detection and integration testing.

When no integration functionality is implemented, this field is RES0.

Accessing ITCTRL

ITCTRL can be accessed at the following address:

C1.4.11 LAR and LSR, Lock Access Register and Lock Status Register

The LAR and LSR characteristics are:

Purpose

The Software Lock mechanism prevents accidental access to the registers of CoreSight components.

For an AP, the lock mechanism is not implemented.

Usage constraints

Default

RW

Offset

0xF00

RES0

31 01

IME
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-165
ID072524 Non-Confidential

C1 About the AP
C1.4 AP Register Descriptions
LAR and LSR are accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of 32-bit registers.

Field Descriptions

The LAR and LSR bit assignments are:

LSR, bits[31:3]

RES0.

nTT, LSR bit[2]

RAZ.

SLK, LSR bit[1]

RAZ.

SLI, LSR bit[0]

RAZ.

KEY, LAR bits[31:0]

WI.

Accessing LAR and LSR

LAR and LSR can be accessed at the following addresses:

C1.4.12 PIDR0-PIDR7, Peripheral Identification Registers

This section describes the bit assignments for AP components. PIDR2PIDR3PIDR4

LAR LSR

WO RO

Offset

LAR LSR

0xFB0 0xFB4

RES0

31 03 2 1

nTT
SLK
SLI

LSR 0xFB4

31 0

KEYLAR 0xFB0
C1-166 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.4 AP Register Descriptions
The PIDR0-PIDR7 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

PIDR0-PIDR7 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Eight 32-bit management registers.

Field Descriptions

The PIDR0-PIDR7 bit assignments are:

Default

RO

31 0

RES0

8 7

CMODREVAND

4 3

PIDR_3 0xFEC

JEDEC

31 0

RES0

8 7

DES_1REVISION

4 3

1

2

PIDR_2 0xFE8

31 0

RES0 PART_1

8 7

DES_0

4 3

PIDR_1 0xFE4

31 0

RES0 PART_0

8 7

PIDR_0 0xFE0

31 0

RES0PIDR_7 0xFDC

31 0

RES0PIDR_6 0xFD8

31 0

RES0PIDR_5 0xFD4
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-167
ID072524 Non-Confidential

C1 About the AP
C1.4 AP Register Descriptions
PIDR3 bits[31:8]

RES0.

REVAND, PIDR3 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

CMOD, PIDR3 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR2 bits[31:8]

RES0.

REVISION, PIDR2 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

JEDEC, PIDR2 bits[3]

0b1 A JEDEC value is used.

DES_1, PIDR2 bits[2:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR1 bits[31:8]

RES0.

DES_0, PIDR1 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PART_1, PIDR1 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR0 bits[31:8]

RES0.

PART_0, PIDR0 bits[7:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR7 bits[31:0]

RES0.

PIDR6 bits[31:0]

RES0.

PIDR5 bits[31:0]

RES0.

PIDR4 bits[31:8]

RES0.

SIZE, PIDR4 bits[7:4]

31 0

RES0

8 7

DES_2SIZE

4 3

PIDR_4 0xFD0
C1-168 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C1 About the AP
C1.4 AP Register Descriptions
See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

DES_2, PIDR4 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

Accessing PIDR0-PIDR7 registers

PIDR0-PIDR7 can be accessed at the following address:

Offset

PIDR0 PIDR1 PIDR2 PIDR3 PIDR4 PIDR5 PIDR6 PIDR7

0xFE0 0xFE4 0xFE8 0xFEC 0xFD0 0xFD4 0xFD8 0xFDC
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C1-169
ID072524 Non-Confidential

C1 About the AP
C1.4 AP Register Descriptions
C1-170 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Chapter C2
The Memory Access Port

This chapter describes the implementation of the Memory Access Port (MEM-AP), and how a MEM-AP connects
the DP to a debug component.

This chapter contains the following sections:

• About the MEM-AP on page C2-172.

• MEM-AP functions on page C2-177.

• Implementing a MEM-AP on page C2-192.

• MEM-AP examples of pushed-verify and pushed-compare on page C2-196.

• MEM-AP programmers’ model on page C2-198.

• MEM-AP register descriptions on page C2-201.

For information that applies to all APs, see Chapter C1 About the AP.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-171
ID072524 Non-Confidential

C2 The Memory Access Port
C2.1 About the MEM-AP
C2.1 About the MEM-AP

A MEM-AP provides access to a memory-mapped abstraction of a set of debug resources in the system being
debugged.

A MEM-AP provides a window into a different memory system without using large amounts of address space in
the originating memory system. The following implementations are examples of this principle:

• Allowing a processor to access the address of another processor.

• Allowing a processor with a 32-bit address space to access the address space of a processor with a larger
address space.

This specification is for MEM-APs using the APv2 architecture. This specification defines the MEM-AP as a Class
0x9 CoreSight component with a 4KB register map.

Note

Access to a MEM-AP might only access a register within the MEM-AP, without generating a memory access to the
system being debugged.

C2.1.1 The programmers’ model for debug register access

The programmers’ model for debug registers is a memory map. Although use of a memory bus system is not
required, this abstraction enables the same programming model to be used for accessing debug registers and system
memory. With this model, the debug registers might be implemented as a peripheral within the system memory
space.

The debug registers in a debug component occupy one or more 4KB blocks of address space. A system might
contain several such debug components.

Although the architecture specification permits a debug component to implement multiple 4KB blocks, most
components implement a single block.

Note

Although a component can occupy only 4KB of address space, Arm recommends that the base address of each
component is aligned to the largest translation granule supported by any processor that can access the component.
For an Armv8-A or Armv9-A processor, the granule size can be up to 64KB.

Debug register files

A 4KB block of address space accessible from an AP can be referred to as a debug register file. A single AP can
access multiple debug register files. There is a base standard for debug register file identification, and debuggers
must be able to recognize and ignore register files that they do not support.

A single MEM-AP can access a mixture of system memory and debug register files.

ROM Tables

A ROM Table is a special case of a debug register file. It is a 4KB memory block that identifies a system.

If there is only one debug component in the system to which the MEM-AP is connected, the ROM Table is optional.
However, because the ROM Table contains a unique system identifier that identifies the complete SoC to the
debugger, an implementation might choose to include a ROM Table even if there is only one other debug component
in the system.

When a system includes more than one debug component it must include a ROM Table.

Chapter D1 About ROM Tables describes ROM Tables.
C2-172 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.1 About the MEM-AP
C2.1.2 Selecting and accessing the MEM-AP

Figure C2-1 shows the implementation of a MEM-AP, and how the MEM-AP connects the DP to the debug
components. Two example debug components are shown, a processor core and an ETM, together with a ROM
Table. APACC accesses to the DP are passed to the MEM-AP.

The method of selecting an AP, and selecting a specific register within the selected AP, is the same for MEM-APs
and JTAG-APs. See also Selecting and accessing an AP on page C1-151.

Figure C2-1 MEM-AP connecting the DP to debug components

C2.1.3 The MEM-AP registers

The MEM-AP registers, and the memory map of the MEM-AP, are described in detail in MEM-AP register
descriptions on page C2-201. However, you require a basic knowledge of the functions of these registers to
understand the operation of the MEM-AP. The MEM-AP registers are shown in Figure C2-1:

Control/Status Word register, CSW

The CSW holds control and status information for the MEM-AP.

ADDR[63:4]

DPACC

Note: Register field widths are not to scale.

APACC
RnWA[3:2]Data[31:0]

RnWA[3:2] Data[31:0]

Generic
Debug Port

(DP)

Debug
address
decode

Addr[63:2] RnWData[31:0]

Pr
oc

es
so

r
4K

B
bl

oc
k

R
eg

is
te

r 0
0x

00
0

R
eg

is
te

r 1
0x

00
4

R
eg

is
te

r 2
0x

00
8

R
eg

is
te

r 3
0x

00
C

R
eg

is
te

r 1
02

3
0x

FF
C

ET
M

4K
B

bl
oc

k

R
eg

is
te

r 0
0x

00
0

R
eg

is
te

r 1
0x

00
4

R
eg

is
te

r 2
0x

00
8

R
eg

is
te

r 3
0x

00
C

R
eg

is
te

r 1
02

3
0x

FF
C

R
O

M
 T

ab
le

4K
B

bl
oc

k

Pr
oc

es
so

r a
dd

re
ss

0x
00

0

ET
M

 a
dd

re
ss

0x
00

4

0x
00

00
00

00
0x

00
8

R
es

er
ve

d
0x

00
C

D
eb

ug
 P

or
t

AP
 A

cc
es

s
M

em
or

y
Ac

ce
ss

 P
or

t
R

es
ou

rc
e-

sp
ec

ifi
c

tra
ns

po
rt

D
eb

ug
 R

eg
is

te
r F

ile
s

AP Access

Access
Port
(AP)

Resource-
specific
Access

Resource
Debug

Registers

RnWA[3:2]Data[31:0]

A[3:2] selects register within bank

Address incrementer

D
eb

ug
 B

as
e

Ad
dr

. (
BA

SE
)

Ba
nk

 0
x
D
F

0
x
D
F
0

0
x
D
F
4

0
x
D
F
8

0
x
D
F
C

C
on

fig
ur

at
io

n
R

eg
. (

C
FG

)

D
eb

ug
 B

as
e

Ad
dr

. (
BA

SE
)

Id
en

tif
ic

at
io

n
R

eg
is

te
r (

ID
R

)

Ba
nk

ed
 D

at
a

0
(B

D
0)

Ba
nk

 0
D
x
1

0
x
D
1
0

0
x
D
1
4

0
x
D
1
8

0
x
D
1
C

Ba
nk

ed
 D

at
a

1
(B

D
1)

Ba
nk

ed
 D

at
a

2
(B

D
2)

Ba
nk

ed
 D

at
a

3
(B

D
3)

C
on

tro
l/S

ta
tu

s
W

or
d

(C
SW

)

Ba
nk

 0
x
D
0

0
x
D
0
0

Tr
an

sf
er

 A
dd

re
ss

 (T
AR

)
0
x
D
0
4

Tr
an

sf
er

 A
dd

re
ss

 (T
AR

)
0
x
D
0
8

D
at

a
R

ea
d/

W
rit

e
(D

R
W

)
0
x
D
0
C

Memory
Access Port
(MEM-AP)

a This is only a partial
view of the DP
registers. For more
information, see
chapter DP
Reference
Information.

D
P

R
eg

is
te

rs
a

C
on

tro
l/S

ta
tu

s
(C

TR
L/

ST
AT

)

D
AT

A
LI

N
K

D
EF

IN
ED

AP
 A

dd
re

ss
 (S

EL
EC

T1
)

R
ea

d
Bu

ffe
r (

R
D

BU
FF

)

Data Link Interface

DP Access

AP
AC

C

Ac
ce

ss
 R

es
ul

t a
nd

 S
ta

tu
s

D
PA

C
C

Debug
Port
(DP)

AP
 A

dd
re

ss
 (S

EL
EC

T)

D
AR

0

Ba
nk

s
0
x
0
0
-
0
x
3
F

0
x
0
0
0

D
AR

n
n

×4

D
AR

25
5

0
x
3
F
C

... ...

...

RnW selects read or write access

...
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-173
ID072524 Non-Confidential

C2 The Memory Access Port
C2.1 About the MEM-AP
Transfer Address Register, TAR

The TAR holds the address for the next access to the memory system, or set of debug resources,
which are connected to the MEM-AP. The MEM-AP can be configured so that the TAR is
incremented automatically after each memory access. Reading or writing to the TAR does not cause
a memory access.

Transfer Response Register, TRR

The TRR captures whether an error response was received during a transaction, and can be used to
clear any logged responses.

The TRR is implemented when Error response handling version 1 is implemented, see CFG,
Configuration register on page C2-209.

Data Read/Write register, DRW

The DRW is used for memory accesses:

• Writing to the DRW initiates a write to the address specified by the TAR.

• Reading from the DRW initiates a read from the address that is specified by the TAR. When
the read access completes, the value is returned from the DRW.

Direct Access Registers, DAR0-DAR255

The 256 Direct Access Registers, DAR0-DAR255, provide direct read or write access to a 1KB
block of memory, starting at the address that is specified in the TAR. Accessing DAR0-DAR255
accesses ((TAR[31:10] << 10) + (n×4)) in memory.Any byte or halfword accesses are not supported
by DARx registers.

The value in TAR[9:0] is ignored in constructing the access address.

Banked Data Registers, BD0 to BD3

The Banked Data Registers, BD0-BD3, provide direct read or write access to a block of four words
of memory, starting at the address that is specified in the TAR. Accessing BD<n> accesses
((TAR[31:4] << 4) + (n×4)) in memory.

The value in TAR[3:0] is ignored in constructing the access address:

• The values of bits[3:2] of the access address depend solely on which of the four banked data
registers is being accessed.

• Bits[1:0] of the access are always zero.

Configuration register, CFG

The CFG register hold information about the configuration of the MEM-AP and whether Realm
Management Extension is supported.

Debug Base Address register, BASE

The BASE register is a pointer into the connected memory system. It points to one of:

• The start of a set of debug registers for the single connected debug component.

• The start of a ROM Table that describes the connected debug components.

Identification Register, IDR

The IDR identifies the MEM-AP.

Note

This brief summary of the MEM-AP registers does not include cross-references to the detailed register descriptions.
For more information about these registers, see MEM-AP register descriptions on page C2-201.
C2-174 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.1 About the MEM-AP
C2.1.4 MEM-AP register accesses and memory accesses

Note

In this section, an access to the debug resources is described as a memory access.

This section summarizes all the possible APACC accesses to a MEM-AP, and covers accesses to each of the
MEM-AP registers. These accesses are summarized in the following sections:

• Accesses that do not initiate a memory access.

• Accesses that initiate a memory access.

• Accesses that support pushed transactions and the transaction counter on page C2-176.

Accesses that do not initiate a memory access

APACC accesses to the following MEM-AP registers do not cause a memory access:

• The Control/Status Word register, CSW.

• The Transfer Address Register, TAR.

• The Transfer Response Register, TRR.

• The Tag 0 Transfer register, T0TR.

• The Configuration register, CFG.

• The Configuration register 1, CFG1.

• The Debug Base Address register, BASE.

• The MECID value register, MECID.

• The Identification Register, IDR.

• The CoreSight management registers, ITCTRL, CLAIMSET and CLAIMCLR, DEVAFF0-DEVAFF1, LAR
and LSR, AUTHSTATUS, DEVARCH, DEVID1-DEVID2, DEVID, DEVTYPE, PIDR0-PIDR7, and
CIDR0-CIDR3.

Accesses that initiate a memory access

This section introduces the APACC accesses to MEM-AP registers that initiate one or more memory accesses.
These APACC accesses are:

• Accesses to the DRW register. A memory access is initiated, using the address that is held in the TAR.

• Accesses to one of the Banked Data Registers, BD0-BD3.

The address that is used for the memory access depends on which Banked Data Register is accessed.

• Accesses to one of the Direct Access Registers, DAR0-DAR255.

The address that is used for the memory access depends on which Direct Access Register is accessed.

• Accesses to the Memory Barrier Transfer register, MBT.

However, if the MEM-AP implementation includes the Large Data Extension, and CSW.Size specifies a transfer
size that is larger than a word, some DRW, BD0-BD3, and DAR0-DAR255 accesses do not initiate a memory
access, see DRW, Data Read/Write register on page C2-226 and Accessing BD0-BD3 on page C2-207.

Sometimes, a single AP transaction initiates more than one memory access:

• When the transaction counter is set. See The transaction counter on page B1-45.

• When packed transfers are supported and enabled and the transfer size is smaller than word. See Packed
transfers on page C2-187.

For more information, see Packed transfers on page C2-187.

If an AP transaction initiates one or more memory accesses, the AP transaction does not complete until one of the
following occurs:

• All the memory accesses complete successfully.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-175
ID072524 Non-Confidential

C2 The Memory Access Port
C2.1 About the MEM-AP
• A memory access terminates with an error response. In this case, any outstanding accesses to the debug
component are abandoned.

• The AP accesses are aborted using the ABORT register, see also MEM-AP response to an abort request
through the DP ABORT register.

Accesses that support pushed transactions and the transaction counter

A MEM-AP supports pushed transactions and sequences of transactions to the following registers only:

• DRW, Data Read/Write register.

• Banked Data registers 0-3, see BD0-BD3, Banked Data registers on page C2-206.

• Direct Access Registers, see DAR0-DAR255, Direct Access registers on page C2-219.

For more information, see:

• Pushed-compare and pushed-verify operations on page B1-46.

• The transaction counter on page B1-45.

C2.1.5 MEM-AP response to an abort request through the DP ABORT register

Note

From ADIv6.0, which uses the DPv3 architecture, the implementation of the ABORT mechanism is OPTIONAL and
IMPLEMENTATION DEFINED. See also DP architecture version 3 (DPv3) address map on page B2-51.

If the AP supports the abort mechanism, and the ABORT register signals an abort request while a memory access
is in progress:

• The MEM-AP must respond to the outstanding transaction in finite time.

• Arm recommends that the MEM-AP sends an error response when responding to the outstanding transaction.
This error response is always sent, regardless of the setting of CSW.ERRNPASS.

• If the TRR is implemented, TRR.ERROR is set to 0b1. If CFG.ERR has a value of 0b0001, the TRR is
implemented.

• CSW.TrInProg is set to 0b1, and remains at this value until any outstanding output transactions are complete.

After an abort, the MEM-AP is in an UNKNOWN state and it is IMPLEMENTATION DEFINED which MEM-AP registers
are accessible. Arm recommends that the MEM-AP registers that are not directly related to an outstanding
transaction remain accessible, to allow a debug agent to diagnose the cause of the problem that caused the abort
request to be issued.

If the MEM-AP receives an abort request while there is no outstanding transaction to the MEM-AP, the MEM-AP
must ignore the abort request.

If the ABORT register is implemented in the DP, it is optional whether an outstanding transaction to an AP is
aborted. If a transaction in progress cannot be aborted, it is permitted for access to a component to be impossible
without resetting the system.

Arm recommends that all APs implement the ability to receive an abort request.

For more details on the abort mechanism and the ABORT register, see DP architecture version 3 (DPv3) address
map on page B2-51 and ABORT, Abort register on page B2-53.
C2-176 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.2 MEM-AP functions
C2.2 MEM-AP functions

This section describes the functions of a MEM-AP. These functions are controlled by the MEM-AP registers, as
described in MEM-AP register descriptions on page C2-201.

The following sections describe functions that a MEM-AP must support:

• Enabling access to the connected debug device or memory system.

• Auto-incrementing the Transfer Address Register (TAR) on page C2-179.

• Stalling accesses on page C2-181.

• Error Handling on page C2-182.

• Response to debug component errors on page C2-184.

The following sections describe functions for which it is IMPLEMENTATION DEFINED whether a particular MEM-AP
supports them:

• Variable access size for memory accesses on page C2-185.

• Byte lanes on page C2-186.

• Packed transfers on page C2-187.

• Completer Memory Ports on page C2-188.

• Twin MEM-APs on page C2-189.

• Software access control on page C2-190.

Note

Some of the IMPLEMENTATION DEFINED functions are inter-dependent. Their dependencies are summarized in
MEM-AP implementation requirements on page C2-193.

C2.2.1 Enabling access to the connected debug device or memory system

This section describes the authentication interfaces that can be used with ADI:

• Authentication interface of an APv2 MEM-AP.

• Authentication interface of a legacy APv1 MEM-AP.

For a full description of the CoreSight Authentication interface, see the Authentication Interface chapter in the Arm®
CoreSight™ Architecture Specification.

For Armv7-A or Armv7-R PEs, Arm strongly recommends that the MEM-AP interface does not use the same
authentication signals as the PEs. The reason for this is that if DBGEN or NIDEN are LOW in to the PE, self-hosted
debug is disabled in the PE. Arm recommends that DBGEN and NIDEN to the MEM-AP are used to control access
to the system and DBGEN and NIDEN to the PE are tied HIGH.

For Armv8-A, Armv8-R, or Armv9-A PEs, Arm recommends that the authentication interface to the MEM-AP is
used to control whether a debugger can access the system, and that any authentication interface to the PE controls
whether certain levels of debug of the PE are permitted. Arm recommends that the MEM-AP uses a different
authentication interface to the PE, to allow a debugger to be independently permitted or blocked, and debug of the
PEs to be independently permitted or blocked.

For a system that implements the Realm Management Extension, the RTPIDEN signal must have the same value
across the entire system and RLPIDEN signal must have the same value across the entire system. For more details,
see Arm® Coresight™ Architecture Specification.

Authentication interface of an APv2 MEM-AP

An ADIv6 APv2 MEM-AP implements one of the following authentication interfaces:

No authentication interface

In this configuration, the MEM-AP is always permitted to perform memory accesses.

Authentication using DBGEN and NIDEN
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-177
ID072524 Non-Confidential

C2 The Memory Access Port
C2.2 MEM-AP functions
This authentication interface is used when the MEM-AP cannot distinguish between Secure and
Non-secure transactions, for example on an APB3 interface.

When (DBGEN | NIDEN) is True, the MEM-AP is permitted to perform accesses and
CSW.DeviceEn is 0b1.

Authentication using DBGEN, NIDEN, SPIDEN, and SPNIDEN

This authentication interface is used when the MEM-AP can perform Secure and Non-secure
transactions.

The authentication rules are:

• When (DBGEN | NIDEN) is True, the MEM-AP is permitted to perform Non-secure
accesses and CSW.DeviceEn is 0b1.

• When ((DBGEN | NIDEN) & (SPIDEN | SPNIDEN)) is True, the MEM-AP is permitted to
perform Secure accesses, and CSW.DeviceEn and CSW.SDeviceEn are 0b1.

Note
For ADIv6 APv2, Secure access is permitted when SPIDEN is not asserted and SPNIDEN
is asserted. In some systems, the APv2 definition might be a change from APv1, for which
on a MEM-AP, only SPIDEN is used for authentication and Secure transactions are not
permitted when SPIDEN is not asserted, but only when ((DBGEN | NIDEN) & SPIDEN)
is True.

Authentication using DBGEN, NIDEN, SPIDEN, SPNIDEN, RLPIDEN, and RTPIDEN

This authentication interface is used when the MEM-AP supports the Realm Management
Extension and can perform Secure, Non-secure, Realm, and Root transactions.

The authentication rules are:

• When (DBGEN | NIDEN) is True, the MEM-AP is permitted to perform Non-secure
accesses, and CSW.DeviceEn is 0b1.

• When ((DBGEN | NIDEN) & (SPIDEN | SPNIDEN)) is True, the MEM-AP is permitted to
perform Secure accesses, and CSW.DeviceEn and CSW.SDeviceEn are 0b1.

• When ((DBGEN | NIDEN) & RLPIDEN) is True, the MEM-AP is permitted to perform
Realm accesses, and CSW.RMEEN[0] is 0b1.

• When ((DBGEN | NIDEN) & (SPIDEN | SPNIDEN) & RLPIDEN & RTPIDEN) is True,
the MEM-AP is permitted to perform Root accesses, and CSW.RMEEN[1] is 0b1.

Note

For ADIv6 APv2, Secure access is permitted when SPIDEN is not asserted and SPNIDEN is
asserted. In some systems, the APv2 definition might be a change from APv1, for which on a
MEM-AP, only SPIDEN is used for authentication and Secure transactions are not permitted when
SPIDEN is not asserted, but only when ((DBGEN | NIDEN) & SPIDEN) is True.

The AUTHSTATUS register reflects the permitted level of debug. For detailed information, see AUTHSTATUS,
Authentication Status Register on page C2-201.

Authentication interface of a legacy APv1 MEM-AP

Legacy MEM-AP implementations of the APv1 architecture that is used for ADIv5 or earlier implement one of the
following authentication interfaces:

No authentication interface

In this configuration, the MEM-AP is always permitted to perform memory accesses.

Authentication using a DEVICEEN signal

This authentication interface uses a DEVICEEN signal to control whether the MEM-AP is
permitted to perform memory accesses.
C2-178 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.2 MEM-AP functions
DEVICEEN is an input to the MEM-AP. It is normally tied HIGH, so that it is asserted even when
the Debug Enable signal, DBGEN, is LOW, allowing the MEM-AP to be programmed even when
debug is disabled.

The value of the DEVICEEN signal is indicated in the CSW.DeviceEn field.

When CSW.DeviceEn is 0b0, no transactions can be issued to any address, and any access to the
Data Read/Write Register or to any of the Banked Data Registers immediately causes the
CTRL/STAT.STICKYERR bit to be set to 0b1. The access does not cause a MEM-AP transaction.

If there is no DEVICEEN signal for a device, the CSW.DeviceEn field must Read-As-One.

Authentication using DEVICEEN and SPIDEN signals

This authentication interface uses DEVICEEN and SPIDEN signals to control whether the
MEM-AP is permitted to perform any memory accesses, or only Non-secure accesses.

The value of the DEVICEEN signal is indicated in the CSW.DeviceEn field, and the value of the
SPIDEN signal is indicated in the CSW.SPIDEN field.

C2.2.2 Auto-incrementing the Transfer Address Register (TAR)

As indicated in The MEM-AP registers on page C2-173, the TAR holds an address in the address map of the debug
resource that is connected to the MEM-AP. This address is used as:

• The address in the debug component memory map of read or write accesses that are initiated by a read or
write of the DRW.

• The base address determines the address in the debug component memory map of read or write accesses that
are initiated by a read or write of one of the Banked Data Registers or Data Access Registers, as described in
Accesses that initiate a memory access on page C2-175.

Software can configure the MEM-AP to auto-increment the TAR on every read or write access to the DRW.
Auto-incrementing is controlled by the CSW.AddrInc field.

When auto address incrementing is enabled, the address in the TAR is updated whenever an access to the DRW is
successful. However, if the DRW transaction completes with an error response, or the transaction is aborted, the
TAR is not incremented.

Note

Accesses to the Banked Data Registers and Data Access Registers never cause the TAR to auto-increment. The
AddrInc field has no effect on accesses to the Banked Data Registers or Data Access Registers.

The permitted values of the AddrInc field are summarized in Table C2-1.

Table C2-1 Summary of AddrInc field values

AddrInc value Description Support required?

0b00 Auto-increment off Always.

0b01 Increment single Always.

0b10 Increment packed If Packed transfers are supported. See Packed transfers on
page C2-187.

If Packed transfers are not supported, the value 0b10 selects the
Auto-increment off mode and reading the AddrInc value returns
0b00.

0b11 Reserved -
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-179
ID072524 Non-Confidential

C2 The Memory Access Port
C2.2 MEM-AP functions
The modes of operation that is associated with each of the possible settings of this field are:

Auto-increment off

The address in the TAR is not automatically incremented, and remains unchanged after any Data
Read/Write Register access.

Increment single

After a successful DRW access, the address in the TAR is incremented by the size of the access. For
information about different access sizes, see Variable access size for memory accesses on
page C2-185.

Note
It is IMPLEMENTATION DEFINED whether a MEM-AP supports transfer sizes other than word. If a
MEM-AP only supports word transfers and Increment single is selected, the TAR always
increments by four after a successful DRW transaction.

Increment packed

Setting AddrInc to 0b10, Increment packed, enables packed transfers, which pack multiple halfword
or byte memory accesses into a single word AP access. Packed transfers are described in more detail
in Packed transfers on page C2-187.

It is IMPLEMENTATION DEFINED whether a MEM-AP supports packed transfers, but:

• An implementation that supports transfers smaller than a word must support packed transfers.

• Packed transfers cannot be supported on a MEM-AP that only supports word transfers.

When packed transfer operation is enabled and the transfer size is smaller than a word, each DRW
access causes multiple memory accesses, and the value in the TAR is auto-incremented correctly
after each memory access. For example:

• For packed accesses with a CSW.Size value of 0b001, denoting halfword (16-bits) transfers,
each DRW read access generates two data bus transfers. The value in the TAR is incremented
by 0x2 after each successful data bus transfer. As described in Packed transfers on
page C2-187, the two halfword values from the two reads are packed into a single 32-bit word
that is returned through the APACC.

• With packed accesses enabled and a CSW.Size value of 0b000, which denotes byte transfers,
a single DRW write operation generates four 8-bit data bus transfers, and the TAR is
incremented by 0x1 after each of these transfers.

Automatic address increment is only guaranteed to operate on the 10 least significant bits of the address that is held
in the TAR. Whether it is possible to auto increment bit [10] and beyond is IMPLEMENTATION DEFINED, which means
that auto address incrementing at a 1KB boundary is IMPLEMENTATION DEFINED. The size of the TAR incrementer
can be obtained from the CFG.TARINC field.

For example, if the TAR is 0x14A4, and the access size is word, successive accesses to the DRW increment TAR to
0x14A8, 0x14AC, and in steps of 4 bytes up to the end of the range:

• If CFG.TARINC is 0x0, the incrementer size is not specified, and the debugger must not assume that the TAR
wraps back to the beginning of each 1KB segment, or continues past the end of a 1KB segment. The end of
the range is at 0x17FC.

• If CFG.TARINC is 0x1, the incrementer size is 10 bits, and the TAR wraps back to the beginning of each 1KB
segment. The end of the range is at 0x17FC.

• If CFG.TARINC is greater than 0x1, the incrementer size is 9+TARINC bits, and the TAR is increased until
the end of the segment that is addressable with 9+TARINC bits is reached, after which the TAR wraps back
to the beginning of the segment. For example, if CFG.TARINC has the value 0x3, the incrementer size is 12
bits, and the end of the range is at 0x1FFC.
C2-180 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.2 MEM-AP functions
C2.2.3 Stalling accesses

An access to the DRW register, one of the Banked Data Registers, BD0-BD3, or one of the Direct Access Registers,
DAR0-DAR255, might not complete until the memory access that is required to fetch the data from memory is
completed. Therefore, to be able to support slow connections, a MEM-AP must support stalling accesses. Stalling
accesses do not have to be completed within a fixed number of cycles.

An example of the importance of stalling accesses can be found in the Armv7 Debug Architecture, which specifies
a mode of operation where accesses to the Data Transfer Registers (DTRs) and Instruction Transfer Register (ITR)
do not complete until the PE is ready to accept new data. The following sequence describes how a PE that complies
with the Armv7 Debug Architecture, and an ADIv6 implementation that comprises a MEM-AP and a JTAG-DP,
might co-operate to inform the debugger that it has to retry an access because of such a condition.

1. The initial conditions are:

• The PE is idle and configured to stall accesses to its ITR and DTRs when it is not ready to accept new
data.

• The DP SELECT-SELECT1 register addresses a MEM-AP with a connection to the PE.

• The AP TAR addresses the ITR of the PE.

2. The debugger writes a first instruction to the ITR:

a. The debugger performs an AP write to DRW with the first instruction to execute:

• The AP is ready, so the DP returns an OK ACK response.

• In the Update-DR state, the DP initiates a transfer to the AP.

b. The TAR addresses the ITR on the PE, and the AP access consists of a write to the DRW. Therefore,
the AP initiates a write to the ITR through its connection to the PE.

c. The core accepts the transfer, because the PE is idle and the instruction complete flag, InstrCompl, is
0b1.

d. The transfer completes.

e. The core starts to execute the instruction from the ITR. InstrCompl is set to 0b0.

Note

The ACK value OK is issued before the transfer is accepted by the PE.

3. The debugger writes a second instruction to the ITR:

a. The debugger performs an AP write to DRW with the next instruction to execute:

• The AP is ready, so the DP returns an OK ACK response.

• In the Update-DR state, the DP initiates a transfer to the AP.

b. The TAR has not changed, and the AP initiates a second write to the ITR through its connection to the
PE.

c. The core is still executing the first instruction (InstrCompl is 0b0) and cannot accept the transfer.

d. The transfer cannot complete, and the AP remains busy.

Note

ACK returns the value OK because the AP is ready to accept a new transfer. The AP does not know that the
PE is not able to accept the transfer until it attempts the transfer.

4. The debugger writes a third instruction to the ITR:

a. The debugger performs an AP write to DRW with the next instruction to execute:

• The AP is not ready, so the DP returns a WAIT ACK response.

• In the Update-DR state, the DP discards the AP access request, because the AP was not ready
at Capture-DR.

b. The debugger might retry the AP write until the DP returns the ACK value OK instead of WAIT in the
Capture-DR state to signal that the first instruction has completed.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-181
ID072524 Non-Confidential

C2 The Memory Access Port
C2.2 MEM-AP functions
5. When the PE completes the first instruction, the following happens:

a. InstrCompl is set to 0b1.

b. The external debug interface on the PE is now ready to accept the second instruction.

c. The AP transfer from stage 3 is accepted by the PE, and the second instruction is written to the ITR.

d. The PE starts to execute the second instruction. InstrCompl is set to 0b0 again.

e. Because the AP transfer is complete, the AP returns to the ready state.

6. The debugger retries writing the third instruction to the ITR:

a. The debugger performs an AP write to DRW with the third instruction:

• The AP is ready, so the DP returns an OK ACK response.

• In the Update-DR state, the DP initiates a transfer to the AP.

b. The TAR has not changed, therefore, the AP initiates another write to the ITR through its connection
to the PE.

c. The response to the AP write attempt depends on whether the PE has finished processing the last
instruction that was written to the ITR:

• If the PE is idle (InstrCompl is 0b1), the AP transfer completes, writing a new instruction to the
ITR. The PE starts to execute the new instruction, and the AP returns to the ready state. This
stage, stage 6, of the debug session is repeated for the next instruction from the debugger.

• If the PE is still processing the previous instruction, InstrCompl is 0b0. The PE cannot accept
the transfer and the AP remains busy. The debug session repeats stage 4.

C2.2.4 Error Handling

The Transfer Response Register (TRR) logs any errors that occurred during MEM-AP memory accesses. For
details, see the TRR field descriptions.

The CSW register provides the following fields to control handling of MEM-AP memory access error responses:

• CSW.ERRNPASS, to control whether the MEM-AP passes an error response upstream to the requester.

• CSW.ERRSTOP, to control whether the MEM-AP prevents memory accesses that are attempted after it
receives an error response.
C2-182 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.2 MEM-AP functions
The CSW.ERRNPASS and CSW.ERRSTOP fields are both 1-bit fields, allowing four possible combinations. Each
combination corresponds to one of the following usage modes:

The behavior of the MEM-AP depends on whether the access initiates a memory access. Accesses that initiate a
memory access are reads or writes to one of the following:

• The DRW.

• The Banked Data registers (BD0-BD3).

Table C2-2

Value of

CSW.ERRNPASS

Value of

CSW.ERRSTOP
Functionality

0b0 0b0 Errors are passed back to the Requester, which handles the error
immediately.

This mode is used in the following situations:

• The Requester can handle error responses precisely,
provided the debug link supports immediate return of
error responses.

This usage is common over a JTAG or SWD link.

• High-latency debug links that favor issuing multiple
transactions before the result of the first transaction is
known, and for which an error response is not a critical
failure so that transactions can proceed despite an error
response.

This usage is useful over links with high latency, for
example USB links. An example is using it for bulk reads
and writes of normal memory for which future
transactions are not critical.

0b0 0b1 This mode is used for high-latency debug links that favor issuing
multiple transactions before the result of the first transaction is
known, and for which an error response is a critical failure.

This usage is useful over links with high latency, for example
USB links. An example is using it to prevent incorrect
programming of control registers when previous programming
has failed.

0b1 0b0 This mode is used when the debug link does not support precise
handling of error responses, for example when the debug agent
is running on an on-chip PE that does not support precise
asynchronous aborts, but where reading or writing blocks of
memory means that future transactions can proceed regardless
of the error response.

This usage is useful over links that do not support error
responses on writes, such as PCIe posted writes.

0b1 0b1 This mode is used when the debug link does not support precise
handling of error responses, for example when the debug agent
is running on an on-chip PE that does not support precise
asynchronous aborts, and where the occurrence of an
unexpected error response means that more transactions must
not be attempted, for example when programming control
registers.

This usage is useful over links that do not support error
responses on writes, such as PCIe posted writes.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-183
ID072524 Non-Confidential

C2 The Memory Access Port
C2.2 MEM-AP functions
• The Direct Access Registers (DAR0-DAR255).

• The Memory Barrier Transfer register (MBT).

Behavior for accesses that initiate a memory access

For all accesses that initiate a memory access:

1. If CSW.TrInProg is 0b1, behavior of the MEM-AP is UNPREDICTABLE, and Arm recommends
that the MEM-AP always returns an error response to the Requester.

2. Otherwise, if the authentication interface on the MEM-AP prevents a transaction:

• No access is performed on the output of the MEM-AP.

• If the TRR is implemented, an error is logged in TRR.ERR.

• If CSW.ERRNPASS is 0b0, an error is passed back to the Requester.

3. Otherwise, if TRR.ERR is 0b1 and CSW.ERRSTOP is 0b1:

• No access is performed on the output of the MEM-AP.

• TRR.ERR remains at 0b1.

• If CSW.ERRNPASS is 0b0, an error is passed back to the Requester.

4. Otherwise, if the memory access is performed on the output of the MEM-AP, and an error
response is received from the memory system:

• If the TRR is implemented, an error is logged in TRR.ERR.

• If CSW.ERRNPASS is 0b0, an error is passed back to the Requester.

5. Otherwise, if the memory access is performed on the output of the MEM-AP, and an abort
request is received by the MEM-AP:

• If the TRR is implemented, an error is logged in TRR.ERR.

• An error is passed back to the Requester, regardless of the value of CSW.ERRNPASS.

6. Otherwise, the memory access is successful:

• TRR.ERR is unchanged.

• No error is passed back to the Requester.

Behavior for accesses that do not initiate a memory access:

For all accesses that do not initiate a memory access:

1. If CSW.TrInProg is 0b1, behavior of the MEM-AP is UNPREDICTABLE, and Arm
recommends:

• That the MEM-AP permits reads to the registers so a debugger can try to determine
the cause of the problem.

• That writes to MEM-AP registers return an error response to the Requester, regardless
of the value of CSW.ERRNPASS.

2. Otherwise, the access is successful:

• TRR.ERR is unchanged.

• No error is passed back to the Requester, regardless of CSW.ERRNPASS.

C2.2.5 Response to debug component errors

If the MEM-AP receives an error response from a debug component, and the error handling flag CSW.ERRNPASS
is configured to pass errors upstream, it returns an error to the DP. As a result of this error, the DP sets the
CTRL/STAT.STICKYERR flag.

For more information about AP error responses, see Error Handling on page C2-182.

For more information about error handling flags, see Sticky flags and DP error responses on page B1-43.
C2-184 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.2 MEM-AP functions
C2.2.6 Variable access size for memory accesses

It is IMPLEMENTATION DEFINED whether a MEM-AP supports memory access sizes other than word (32-bit).

If a MEM-AP implementation does not support the Large Data Extension, but does support various access sizes, it
must support word, halfword, and byte accesses.

Note

The ADI specification does not require a MEM-AP to support access sizes other than word. However, if a MEM-AP
can access other memory, such as system memory, Arm recommends that it supports other access sizes as well. For
more information, see MEM-AP implementation requirements on page C2-193.

The access size is controlled by the CSW.Size field. Table C2-3 shows the access size options.

When a CSW.Size specifies a size that is smaller than a word, the resulting data access is returned in byte lanes. See
Byte lanes on page C2-186 for more information.

Caution

If a Banked Data Register is accessed with CSW.Size set to any size other than word or doubleword, behavior is
UNPREDICTABLE.

Table C2-3 Size field values when the MEM-AP supports different access sizes

Size value, CSW.Size Memory access size Support required?

0b000 Byte (8-bits) No

0b001 Halfword (16-bits) No

0b010 Word (32-bits) Yesa

a. On a MEM-AP implementation that does not support access sizes other than word, the
Size field is read-only, and always returns the value 0b010.

0b011b

b. Supported by the MEM-AP Large Data Extension, see MEM-AP Large Data Extension
on page C2-193. If the extension is not implemented, this value is reserved.

Doubleword (64-bits) No

0b100b 128-bits No

0b101b 256-bits No

0b110 - 0b111 Reserved -
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-185
ID072524 Non-Confidential

C2 The Memory Access Port
C2.2 MEM-AP functions
C2.2.7 Byte lanes

A MEM-AP that supports memory transfers of less than 32-bits uses byte lanes for the data transfers between the
DRW and the debug component. Which byte lanes are used depends on:

• The memory transfer size that is specified by the CSW.Size field, see Variable access size for memory
accesses on page C2-185.

• The two least significant bits of the TAR, TAR[1:0].

If supported, packed transfers also use byte lanes for byte and halfword transfers, as described in Packed transfers
on page C2-187.

Table C2-4 shows how byte lanes are used in the DRW.

Big-endian support

The byte lane with the lowest address corresponds to the least significant byte of DRW or BD0-BD3, and can be
described as little-endian.

Previous versions of this manual described a variant of the MEM-AP that supported an alternative byte-lane
scheme, where the byte lane with the lowest address corresponded to the most significant byte of DRW or
BD0-BD3, or big-endian. Bit[0] of the CFG register was used to describe whether the MEM-AP was little-endian
or big-endian. From ADIv5.2 onwards, this scheme is obsolete.

If the target uses a big-endian memory arrangement, the external debugger must treat the values that are passed
through the MEM-AP accordingly.

Table C2-4 Byte-laning of memory accesses from the DRW

CSW[2:0], Size TAR[1:0] Access data

0b000, byte 0b00 DRW[7:0]

0b01 DRW[15:8]

0b10 DRW[23:16]

0b11 DRW[31:24]

0b001, halfword 0b00 DRW[15:0]

0b10 DRW[31:16]

0bX1 IMPLEMENTATION DEFINEDa

a. IMPLEMENTATION DEFINED behavior is one of the following:

Unaligned portions of the address are ignored. For example, an unaligned word access to 0x8003
accesses the 32-bit value at 0x8000.

The access is faulted, and the MEM-AP returns an error response.

The access is made to the unaligned address specified in TAR[31:0], and the result is packed as if
packed transfers were enabled, see Packed transfers on page C2-187. The data transfer might be
split into more than one memory access across the connection to the debug component.

For example, an unaligned word access to 0x8003 accesses the bytes at 0x8003, 0x8004, 0x8005, and
0x8006. This word access might generate four byte-wide accesses to memory, or the accesses to
bytes 0x8004 and 0x8005 might be performed as a single halfword (16-bit) access.

0b010, word 0b00 DRW[31:0]

0b1X, 0bX1 IMPLEMENTATION DEFINEDa
C2-186 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.2 MEM-AP functions
C2.2.8 Packed transfers

Whether a MEM-AP supports packed transfers is IMPLEMENTATION DEFINED. If packed transfers are supported,
they are enabled by setting the auto address increment field, CSW.AddrInc, to 0b10 (Increment packed). See
Auto-incrementing the Transfer Address Register (TAR) on page C2-179.

When packed transfers are enabled, each access to the DRW results in one of the following actions, depending on
the value of the CSW.Size field, see Variable access size for memory accesses on page C2-185:

• If CSW.Size = 0b010 (word), there is a single word (32-bit) access.

• If CSW.Size = 0b001 (halfword), there are two halfword (16-bit) accesses.

• If CSW.Size = 0b000 (byte), there are four byte (8-bit) accesses.

Use of packed transfers with CSW.Size set to a transfer size larger than word is UNPREDICTABLE.

When packed transfers are enabled, after each successful memory access the address held in the TRR is
automatically updated by the access size.

Accesses are always made in increasing memory address order:

• For write accesses to memory, data is unpacked from the DRW in byte-lanes that depend on the memory
address of each write access.

• For read accesses, data is packed into the DRW in byte-lanes that depend on the memory address of each read
access.

The byte lanes for data packing and unpacking are the same as the byte lanes that are described in Table C2-4 on
page C2-186, as shown in the following examples:

• Example C2-1, Halfword packed write operation.

• Example C2-2 on page C2-188, Byte packed write operation on page C2-188.

• Example C2-3 on page C2-188, Halfword packed read operation on page C2-188.

Note

The descriptions in these examples assume that each memory access completes successfully. If any access
terminates with an error response, the sequence is halted at that point, and the MEM-AP returns an error.

Example C2-1 Halfword packed write operation

This example describes a single word (32-bit) write access to the DRW on a MEM-AP with the following settings:

• CSW.Size = 0b001, specifying halfword (16-bit) memory accesses.

• CSW.AddrInc = 0b10, specifying packed transfer operation.

• TAR[31:0] = 0x00000000, the base address of the access.

Two write transfers are made. The halfword entries in Table C2-4 on page C2-186 define the byte lanes for these
accesses. The accesses are made in the following order:

1. TAR[1] == 0b0, so DRW[15:0] is written to address 0x00000000.

After this transfer, the value in the TAR is increased by the transfer size of 2, and becomes 0x00000002.

2. TAR[1] == 0b1, so DRW[31:16] is written to address 0x00000002.

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000004.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-187
ID072524 Non-Confidential

C2 The Memory Access Port
C2.2 MEM-AP functions
Example C2-2 Byte packed write operation

This example describes a single word (32-bit) write access to the DRW on a MEM-AP with the following settings:

• CSW.Size = 0b000, specifying byte (8-bit) memory accesses

• CSW.AddrInc = 0b10, specifying packed transfer operation

• TAR[31:0] = 0x00000002, the base address of the access.

Four write transfers are made. The byte entries in Table C2-4 on page C2-186 define the byte lanes for these
accesses. The accesses are made in the following order:

1. TAR[1:0] == 0b10, so DRW[23:16] is written to address 0x00000002.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000003.

2. TAR[1:0] == 0b11, so write DRW[31:24] is written to address 0x00000003.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000004.

3. TAR[1:0] == 0b00, so write DRW[7:0] is written to address 0x00000004.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000005.

4. TAR[1:0] == 0b01, so write DRW[15:8] is written to address 0x00000005.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000006.

Example C2-3 Halfword packed read operation

This example describes a single word (32-bit) read access to the DRW on a MEM-AP with the following settings:

• CSW.Size = 0b001, specifying halfword (16-bit) memory accesses.

• CSW.AddrInc = 0b10, to give packed transfer operation.

• TAR[31:0] = 0x00000002, to define the base address of the access.

Two read transfers are made. The little-endian halfword entries in Table C2-4 on page C2-186 define the byte lanes
for these accesses. The accesses are made in the following order:

• TAR[1] == 0b1, so read a halfword from address 0x00000002, and pack this value into DRW[31:16].

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000004.

• TAR[1] == 0b0, so read a halfword from address 0x00000004, and pack this value into DRW[15:0].

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000006.

• The complete word has been read into the DRW, and the APACC read access completes.

The optional DP transaction counter, described in The transaction counter on page B1-45, enables an external
debugger to make a single AP transaction request that generates multiple AP transactions. Each of these transactions
transfers a single word (32-bits) of data, and the TAR is incremented automatically between the transactions. If the
MEM-AP supports memory accesses smaller than word and packed transfers and packed transfer operation is
enabled, each of the AP transactions that are driven by the transaction counter is split into multiple memory
accesses. For example, if the transaction counter is programmed to generate eight word accesses, and the MEM-AP
is programmed to make packed byte transfers, a total of 32 memory accesses of one byte are made.

C2.2.9 Completer Memory Ports

A MEM-AP can include a Completer memory port, which can be used by an external bus transaction Requester to
access the area of memory that is requested by the MEM-AP. For example, the external bus transaction Requester
can be permitted to access the debug registers of the system to which the MEM-AP is connected.
C2-188 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.2 MEM-AP functions
If a MEM-AP implements a Completer memory port, Completer memory port accesses are multiplexed with AP
accesses. Completer memory port accesses have bit [31] of the access address forced to zero. A debug component
can use the value of this address bit to distinguish between Completer memory port accesses and AP accesses.

For more information about MEM-AP memory addressing, see BASE, Debug Base Address register on
page C2-203.

C2.2.10 Twin MEM-APs

A twin MEM-AP solution enables an external debugger to use one logical MEM-AP, and on-chip software to use a
separate logical MEM-AP. These MEM-APs can be physically in the same unit, and share IO ports and most of the
programmers’ model, while duplicating some physical registers between them.

All writable registers and status registers have unique copies in all MEM-APs, except for the following:

• ITCTRL.IME might be shared between all MEM-APs that share an input interface.

• CSW.TrInProg takes the same value for all MEM-APs that share an output memory interface.

Note

If the Large Data Extension is implemented, accesses to doublewords require two consecutive accesses to the DRW,
BD0-BD3, or DAR0-DAR255 registers. Each logical MEM-AP must behave as a separate MEM-AP and tolerate
interleaving of accesses to these registers in each independent MEM-AP.

One of each pair of logical MEM-APs is used by an external debugger and the other is used by on-chip software.
No physical protection is provided to prevent access to both MEM-APs by a single agent. Each agent must only use
one of the MEM-APs for a particular memory system.

If a memory system can be accessed through multiple MEM-APs, a debug agent must use only one of those APs.
ROM Tables that are exposed to an external debugger must point to a single MEM-AP for each memory system,
and the external debugger must use only that MEM-AP.

Other debug agents, for example on-chip software, must use the other APs and must not use the MEM-AP that is
reserved for external debuggers.

The method for determining which APs can be used by on-chip debug agents is not defined in the architecture, but
can be achieved through other methods, for example device descriptor tables.

If an abort request is issued to a pair of logical MEM-APs, all outstanding input transactions to the MEM-APs are
aborted. Each logical MEM-AP that had an outstanding input transaction at the time of the abort request must follow
the rules for handling abort requests, as defined in MEM-AP response to an abort request through the DP ABORT
register.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-189
ID072524 Non-Confidential

C2 The Memory Access Port
C2.2 MEM-AP functions
C2.2.11 Software access control

It is IMPLEMENTATION DEFINED whether the CSW register includes the debug software access enable flag
CSW.DbgSwEnable.

Implementation of the Debug Software Access Enable function is deprecated.

If the Debug Software Access Enable function is not implemented:

• The system must treat CSW.DbgSwEnable as HIGH, and enable software access to the debug resources.

• CSW.DbgSwEnable is RES0.

When implemented, the CSW.DbgSwEnable flag can be applied as follows:

Using DbgSwEnable to control a Completer memory port

If a MEM-AP implements a Completer memory port, the DbgSwEnable flag can be used to enable
or disable the port as shown in Table C2-5. For information about Completer memory ports, see
Completer Memory Ports on page C2-188.

Using DbgSwEnable to control software access to debug resources

The DbgSwEnable flag can drive a system-level signal, DBGSWENABLE. This signal gates
software access to debug resources. For example, in a PE that complies with the Armv7 Debug
Architecture, some CP14 registers are not accessible when DBGSWENABLE is LOW. For more
information, see the Arm Architecture Reference Manual, Armv7-A and Armv7-R edition.

If CSW.DbgSwEnable is implemented and the MEM-AP is disabled, CSW.DbgSwEnable must be treated as one.

Caution

Arm strongly recommends not setting CSW.DbgSwEnable to zero. If CSW.DbgSwEnable is implemented, setting
it to zero can cause software that is executing on the target to malfunction.

C2.2.12 Realm Management Extension

CFG.RME indicates whether the MEM-AP implements the Realm Management Extension.

When the Realm Management Extension is implemented, CSW.RMEEN is present and is used with both
CSW.SDeviceEn and CSW.DeviceEn to indicate which memory accesses are permitted to be performed by the
MEM-AP.

Table C2-5 Using DbgSwEnable to control a Completer memory port

Value of
DbgSwEnable

Effect on
Completer memory port

0b0 Disabled.

0b1 Enabled.
This value is the value after a reset.

Table C2-6 Using DbgSwEnable to control software access to debug resources

Value of
DbgSwEnable

Corresponding value of the
DBGSWENABLE signal

0b0 LOW.

0b1 HIGH.

This value is the value after a reset.
C2-190 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.2 MEM-AP functions
CSW.DeviceEn, CSW.SDeviceEn, and CSW.RMEEN indicate when memory accesses are permitted to each
physical address (PA) space.

Table C2-8 and Table C2-7 describe the MEM-AP permitted memory accesses when Realm Management Extension
is implement or not implemented.

For a MEM-AP that can access system resources that do not have their own access controls for each PA space, the
memory accesses initiated by the MEM-AP must be checked by a Granule Protection Check (GPC) process, such
as that provided by a System MMU. Examples of system resources that do not have their own access controls for
each PA space include:

• Normal system memory that supports multiple PA spaces.

• Memory that is dedicated to a single PA space and is not protected by a completer-side PA space filter that
prevents an access with an incorrect PA space.

• A peripheral that processes data from one or more PA spaces but does not have any specific access controls
to prevent accessing that data from an incorrect PA space. The external debug interfaces for a PE that
implements FEAT_RME has these access controls and do not fall in this category.

In a typical system, this means that the memory accesses initiated by an AXI-AP must be checked by a GPC process.

In a typical system, this means that the memory accesses initiated by an APB-AP, where only debug peripherals are
accessed, do not need to be checked by a GPC process. This is because debug peripherals that process data from
one or more PA spaces typically have their own access controls. For example, a completer-side PA space filter that
prevents non-Root accesses from accessing Root data.

In a system that implements the Realm Management Extension, a MEM-AP must be reset on an RME system reset.

Table C2-7 MEM-AP permitted memory accesses, when Realm Management Extension is not
implemented

CSW.DeviceEn CSW.SDeviceEn Permitted Memory Accesses

0b0 0bx None

0b1 0b0 Non-secure only

0b1 0b1 Non-secure and Secure

Table C2-8 MEM-AP permitted memory accesses, when Realm Management Extension is
implemented

CSW.DeviceEn CSW.SDeviceEn CSW.RMEEN Permitted Memory Accesses

0b0 0bx 0bxx None

0b1 0b0 0bx0 Non-secure only

0b1 0b0 0bx1 Non-secure and Realm

0b1 0b1 0bx0 Non-secure and Secure

0b1 0b1 0b01 Non-secure, Secure, and Realm

0b1 0b1 0b11 Non-secure, Secure, Realm, and
Root
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-191
ID072524 Non-Confidential

C2 The Memory Access Port
C2.3 Implementing a MEM-AP
C2.3 Implementing a MEM-AP

This section gives information about the implementation of a MEM-AP and contains the following:

• IMPLEMENTATION DEFINED features of a MEM-AP implementation.

• MEM-AP implementation requirements on page C2-193.

• MEM-AP Extensions on page C2-193.

C2.3.1 IMPLEMENTATION DEFINED features of a MEM-AP implementation

The following features of a MEM-AP implementation are IMPLEMENTATION DEFINED:

• Whether the MEM-AP supports data bus access sizes other than word size.

• Whether the MEM-AP supports packed transfers.

• Whether the MEM-AP includes the MEM-AP Large Physical Address Extension on page C2-193, which
implements support for addresses larger than 32 bits.

• Whether the MEM-AP includes MEM-AP Barrier Operation Extension on page C2-194, which implements
support for barrier operations.

• Whether the MEM-AP supports the features that are described in Software access control on page C2-190.

These implementation choices affect the following register fields:

• CSW.{DbgSwEnable, Mode, AddrInc, Size}.

• CFG.{LD, LA, BE}.

In addition, the CSW register can include the following optional fields, which are not described elsewhere in this
chapter:

CSW.Prot and CSW.Type, bits[30:24] and bits[15:12]

These fields can be implemented to provide a bus access control mechanism. If implemented, it
enables a debugger to specify flags for a memory access. The permitted values and their significance
are IMPLEMENTATION DEFINED, because they relate to the underlying bus architecture. These bits
must reset to a valid access type and Arm strongly recommends that these bits are reset to a useful
access type. This reset value might not be zero. For example:

• If the bus supports privileged and non-privileged accesses, the reset value of this field must
select privileged accesses.

• If the bus supports code and data accesses, the reset value must select data accesses.

• If the bus supports both Secure and Non-secure address spaces, CSW.Prot and CSW.Type
must reset to select Non-secure addresses.

If these fields are set to a value which is not permitted for the bus access, and a bus access is
requested, behavior of the MEM-AP is UNPREDICTABLE. The MEM-AP must not perform an invalid
bus transaction, and Arm recommends the following behavior:

• No bus transaction is performed.

• If CSW.ERRNPASS is 0b0, an error response is generated.

• If implemented, TRR.ERR is set to 0b1.

CSW.SDeviceEn, bit[23]

This field can be implemented to indicate whether the MEM-AP can generate secure accesses.

Note

In ADIv5 and older versions of the architecture, the CSW.SPIDEN field is in the same bit position
as CSW.SDeviceEn, and has the same meaning. From ADIv6, the name SDeviceEn is used to avoid
confusion between this field and the SPIDEN signal on the authentication interface.
C2-192 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.3 Implementing a MEM-AP
Several reference implementation options for implementers and users of MEM-APs when connecting to standard
memory interfaces are defined in Appendix E1 Standard Memory Access Port Definitions.

C2.3.2 MEM-AP implementation requirements

The descriptions that are given in the section MEM-AP functions on page C2-177 indicate several areas where the
MEM-AP functionality is IMPLEMENTATION DEFINED. However, the IMPLEMENTATION DEFINED features are
inter-dependent. These dependencies are summarized here.

In a MEM-AP:

• The options for the size of data bus accesses are:

— Support word (32-bit) accesses only.

— Support word (32-bit), halfword (16-bit), and byte (8-bit) accesses, and optionally support larger
access sizes.

No other combinations of supported access sizes are permitted. For more information, see Variable access
size for memory accesses on page C2-185.

• If access sizes smaller than word are not supported, packed transfers are not supported. Otherwise, it is
IMPLEMENTATION DEFINED whether packed transfers are supported. For more information, see Packed
transfers on page C2-187.

• It is IMPLEMENTATION DEFINED whether access sizes larger than 32-bit are supported. If larger access sizes
are not supported, CFG.LD is RAZ. For more information, see MEM-AP Large Data Extension.

• It is IMPLEMENTATION DEFINED whether addresses larger than 32-bit are supported. If larger addresses are not
supported, CFG.LA is RAZ. For more information, see MEM-AP Large Physical Address Extension.

• It is IMPLEMENTATION DEFINED whether barrier operations are supported. If barrier operations are not
supported, CSW.Mode is RAZ. For more information, see MEM-AP Barrier Operation Extension on
page C2-194.

C2.3.3 MEM-AP Extensions

The following subsections summarize the effects of the optional MEM-AP Extensions.

MEM-AP Large Physical Address Extension

The MEM-AP Large Physical Address Extension provides address spaces of up to 64-bits.

Implementing this extension changes the format of the following MEM-AP registers:

• BASE, Debug Base Address register on page C2-203.

• CFG, Configuration register on page C2-209.

• CSW, Control/Status Word register on page C2-216.

• DRW, Data Read/Write register on page C2-226.

• TAR, Transfer Address Register on page C2-237.

MEM-AP Large Data Extension

The MEM-AP Large Data Extension can support 32-bit, 64-bit, 128-bit, or 256-bit accesses, in addition to optional
8-bit and 16-bit accesses.

The following registers have different formats to support this extension:

• CSW, Control/Status Word register on page C2-216.

• DRW, Data Read/Write register on page C2-226.

• BD0-BD3, Banked Data registers on page C2-206.

• DAR0-DAR255, Direct Access registers on page C2-219.

• CFG, Configuration register on page C2-209.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-193
ID072524 Non-Confidential

C2 The Memory Access Port
C2.3 Implementing a MEM-AP
Although the extension can support 64-bit, 128-bit, and 256-bit accesses, it does not require an implementation to
support all these access sizes. If the CSW.Size field is written with a value corresponding to a size that is not
supported, or with a reserved value:

• A read of the field returns a value corresponding to a supported size.

• MEM-AP behavior corresponds to the value returned by the read of the CSW.Size field.

If a MEM-AP implements the Large Data Extension and doubleword accesses or larger are to be performed,
multiple consecutive accesses are required to the DRW, BD0-BD3, or DAR0-DAR255 registers to perform a large
data transaction. These consecutive accesses must be performed to the same register type, otherwise the behavior
of the MEM-AP is UNPREDICTABLE. For detailed information about the rules for large data transactions on these
registers, see their usage constraints in MEM-AP register descriptions on page C2-201.

MEM-AP Barrier Operation Extension

The MEM-AP Barrier Operation Extension provides support for barrier operations. If the bus supports a weak
memory ordering model, then barrier operations must create order.

The following registers are new or have different formats to support this extension:

• CSW, Control/Status Word register on page C2-216.

• MBT, Memory Barrier Transfer register on page C2-233.

MEM-AP Memory Tagging Extension

The MEM-AP Memory Tagging Extension (MTE) provides support for accessing and updating Allocation tags:

• CFG1 indicates support for the MTE.

• T0TR provides control over the MTE.

• CSW.MTE provides control over the MTE.

When memory tagging of accesses is disabled, system read accesses do not request the Allocation tag from the
memory system.

When memory tagging of accesses is disabled, system write accesses do not update the Allocation tag.

When memory tagging of accesses is enabled, system read accesses request the Allocation tag from the memory
system and store the tag received in T0TR, in the position defined by the following equations:

• ADDR_LSB = CFG1.TAG0GRAN

• ADDR_MSB = CFG1.TAG0GRAN + (log2(32/CFG1.TAG0SIZE) - 1)

• ADDR_OFFSET = Address_accessed[ADDR_MSB:ADDR_LSB]

• T0TR_LSB = ADDR_OFFSET * CFG1.TAG0SIZE

• T0TR_MSB = (ADDR_OFFSET * CFG1.TAG0SIZE) + (CFG1.TAG0SIZE - 1)

• T0TR[T0TR_MSB:T0TR_LSB] = Allocation_tag

Other bits of T0TR are unchanged.

When memory tagging of accesses is enabled, system write accesses update the Allocation tag in the memory
system using data from T0TR, from the position defined by the following equations:

• ADDR_LSB = CFG1.TAG0GRAN

• ADDR_MSB = CFG1.TAG0GRAN + (log2(32/CFG1.TAG0SIZE) - 1)

• ADDR_OFFSET = Address_accessed[ADDR_MSB:ADDR_LSB]

• T0TR_LSB = ADDR_OFFSET * CFG1.TAG0SIZE

• T0TR_MSB = (ADDR_OFFSET * CFG1.TAG0SIZE) + (CFG1.TAG0SIZE - 1)

• Allocation_tag = T0TR[T0TR_MSB:T0TR_LSB]
C2-194 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.3 Implementing a MEM-AP
MEM-AP Memory Encryption Contexts Extension

The MEM-AP Memory Encryption Contexts extension (MEC Extension) provides support for memory encryption
contexts (MECs) to physical address (PA) spaces:

• CFG.MECIDWIDTH indicates the MECID width implemented by the MEM-AP.

• MECID defines the MECID output with memory accesses performed by the MEM-AP.

The MEM-AP ensures that an appropriate MECID is output for the selected PA space. For a PA space that supports
MEC, any MECID value is appropriate. For a PA space that does not support MEC, a MECID of zero is the
appropriate MECID value.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-195
ID072524 Non-Confidential

C2 The Memory Access Port
C2.4 MEM-AP examples of pushed-verify and pushed-compare
C2.4 MEM-AP examples of pushed-verify and pushed-compare

A DP might support pushed operations, as described in Pushed-compare and pushed-verify operations on
page B1-46. However, these operations involve interaction between the DP and an AP, because each pushed
operation requires an AP read, which, in the case of a MEM-AP, requires a read from the connected debug memory
system. This section gives some examples of pushed operations on a DP that is connected to a MEM-AP.

C2.4.1 Example of using a pushed-verify operation on a MEM-AP

The following pushed-verify mechanism verifies the contents of system memory:

1. Make sure that the MEM-AP CSW register is set up to increment the TAR after each access.

2. Write the start address of the memory region that is to be verified to the TAR.

3. Write a series of expected values as AP transactions. On each write transaction, the DP issues an AP read
access, compares the result against the value that is supplied in the AP write transaction, and sets the
CTRL/STAT.STICKYCMP bit if the values do not match.

The TAR is incremented on each transaction.

In this way, the series of values that are supplied is compared against the contents of the memory region, and
STICKYCMP is set to 0b1 if they do not match.

C2.4.2 Example of using a pushed-find operation on a MEM-AP

The following pushed-find mechanism searches system memory for a particular word:

1. Make sure that the MEM-AP CSW register is set up to increment the TAR after each access.

2. Write the start address of the debug register region that is to be searched to theTAR.

3. Repeatedly write the value to be searched for as an AP write transaction to the DRW. On each transaction,
the MEM-AP reads the location indicated by the TAR.

The return value is compared with the value supplied in the AP write transaction. If they match, the
STICKYCMP flag is set to 0b1. If they do not match, the TAR is incremented.

Pushed-find can be combined with byte lane masking to search for specific bytes.

For an example of how the transaction counter can refine this search operation, see Example of using the transaction
counter for a pushed-compare operation on a MEM-AP on page C2-197.

Pushed-find without address incrementing can be used to poll a single location, for example to test the value of a
flag after completion of an operation.
C2-196 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.4 MEM-AP examples of pushed-verify and pushed-compare
C2.4.3 Example of using the transaction counter for a pushed-compare operation on a MEM-AP

The transaction counter can refine the pushed-compare search operation that is described in Example of using a
pushed-find operation on a MEM-AP on page C2-196. Pushed-compare enables searching system memory for a
particular word, or, when used with byte lane masking, specific bytes. The transaction counter enables using a single
AP write transaction to search an area of memory.

To perform a search under the control of the transaction counter:

1. Make sure that the MEM-AP CSW register is set up to increment the TAR after each access.

2. Write the start address of the debug register region that is to be searched to theTAR.

3. Write to the transaction counter field, CTRL/STAT.TRNCNT to indicate the required number of repeat
accesses. This value defines the size of the region to be searched.

4. Write the search value as an AP write to the DRW. The MEM-AP repeatedly reads the location indicated by
the TAR. The value that is returned by each read is compared with the value supplied in the AP write
transaction. If they match, the STICKYCMP flag is set to 0b1 and the operation completes.

• The TAR is incremented.

• If the transaction counter is non-zero, it is decremented.

The operation completes when either the STICKYCMP flag is set to 0b1 or after the final read when the
transaction counter was zero.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-197
ID072524 Non-Confidential

C2 The Memory Access Port
C2.5 MEM-AP programmers’ model
C2.5 MEM-AP programmers’ model

Table C2-9 shows a memory map of the MEM-AP registers, and indicates where they are described in detail.

Reserved addresses in the register memory map are RES0.

Using the Debug Port to access Access Ports on page A1-28 explains how to access AP registers.

Table C2-9 MEM-AP APv2 programmers’ model

Offset Type Name Description

Direct Access Registers

0x000 - 0x3FC RW DAR0-DAR255 See DAR0-DAR255, Direct Access registers on page C2-219.

Reserved area

0x400 - 0xCFC - - Reserved, RES0.

Main control and status registers

0xD00 RW CSW See CSW, Control/Status Word register on page C2-216.

0xD04 - 0xD08 RW TAR See TAR, Transfer Address Register on page C2-237.

If the implementation includes the Large Physical Address
Extension, the word at offset 0xD04 represents the least significant
word of the transfer address, and the word at offset 0xD08
represents the most significant word.

If the implementation does not include the Large Physical
Address Extension, the word at offset 0xD04 represents the
transfer address, and the word at offset 0xD08 is RES0.

0xD0C RW DRW See DRW, Data Read/Write register on page C2-226.

0xD10 - 0xD1C RW BD0-BD3 See BD0-BD3, Banked Data registers on page C2-206.

0xD20 IMP
DEF

MBT See MBT, Memory Barrier Transfer register on page C2-233.

If the implementation does not include the Barrier Operation
Extension, this register is RES0.

0xD24 RW TRR See TRR, Transfer Response register on page C2-241.

0xD28 - 0xD2C - - Reserved, RES0.

0xD30 RW T0TR See T0TR, Tag 0 Transfer register on page C2-239.

0xD34 - 0xDD8 - - Reserved, RES0.

0xDDC RW MECID See MECID, MECID value register on page C2-234.

0xDE0 RO CFG1 See CFG1, Configuration register 1 on page C2-212.

0xDE4 - 0xDEC - - Reserved, RES0.

0xDF0 RO BASE See BASE, Debug Base Address register on page C2-203.

If the implementation includes the Large Physical Address
Extension, the word at this offset represents the most significant
word of the debug base address.

If the implementation does not include the Large Physical
Address Extension, the word at this offset is RES0.

0xDF4 RO CFG See CFG, Configuration register on page C2-209.
C2-198 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.5 MEM-AP programmers’ model
0xDF8 RO BASE See BASE, Debug Base Address register on page C2-203.

If the implementation includes the Large Physical Address
Extension, the word at this offset represents the least significant
word of the debug base address.

If the implementation does not include the Large Physical
Address Extension, the word at this offset represents the entire
debug base address.

0xDFC RO IDR See IDR, Identification Register on page C2-228.

Reserved area

0xE00 - 0xEFC - - Reserved, RES0.

CoreSight management registers

0xF00 RW ITCTRL See ITCTRL, Integration Mode Control Register on page C2-230.

0xF04 - 0xF9C - - Reserved, RES0.

0xFA0 RW CLAIMSET on
page C2-214

See CLAIMSET and CLAIMCLR, Claim Tag Set Register and
Claim Tag Clear Register on page C2-214.

0xFA4 RW CLAIMCLR on
page C2-214

0xFA8 RO DEVAFF0 on
page C2-221

See DEVAFF0-DEVAFF1, Device Affinity Registers on
page C2-221.

0xFAC RO DEVAFF1 on
page C2-221

0xFB0 WO LAR on
page C2-231

See LAR and LSR, Lock Access Register and Lock Status Register
on page C2-231.

0xFB4 RO LSR on
page C2-231

0xFB8 RO AUTHSTATUS See AUTHSTATUS, Authentication Status Register on
page C2-201.

0xFBC RO DEVARCH See DEVARCH, Device Architecture Register on page C2-222.

0xFC0 RO DEVID2 on
page C2-224

See DEVID1-DEVID2, Device Configuration Registers on
page C2-224.

0xFC4 RO DEVID1 on
page C2-224

0xFC8 RO DEVID See DEVID, Device Configuration Register on page C2-223.

0xFCC RO DEVTYPE See DEVTYPE, Device Type Register on page C2-225.

Table C2-9 MEM-AP APv2 programmers’ model (continued)

Offset Type Name Description
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-199
ID072524 Non-Confidential

C2 The Memory Access Port
C2.5 MEM-AP programmers’ model
0xFD0 - 0xFDC RO PIDR4 on
page C2-234-PI
DR7 on
page C2-234

See PIDR0-PIDR7, Peripheral Identification Register on
page C2-234.

0xFE0 - 0xFEC RO PIDR0 on
page C2-234-PI
DR3 on
page C2-234

0xFF0 - 0xFFC RO CIDR0-CIDR3 See CIDR0-CIDR3, Component Identification Registers on
page C2-213.

Table C2-9 MEM-AP APv2 programmers’ model (continued)

Offset Type Name Description
C2-200 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6 MEM-AP register descriptions

This section gives full descriptions of the MEM-AP registers.

The registers are listed alphabetically by name.

C2.6.1 AUTHSTATUS, Authentication Status Register

The AUTHSTATUS characteristics are:

Purpose

Reports the required security level and status of the authentication interface. Where functionality
changes on a given security level, the change in status must be reported in this register.

The effect of each debug level being enabled or disabled is specific to each AP.

Usage constraints

AUTHSTATUS is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The AUTHSTATUS bit assignments are:

Bits[31:28]

RES0.

RTNID, bits[27:26]

Indicates the status of Root non-invasive debug.

If the MEM-AP does not implement the Realm Management Extension, this field has the value 0b00.

If the MEM-AP implements the Realm Management Extension and Root accesses are not permitted,
this field has value 0b10.

If the MEM-AP implements the Realm Management Extension and Root accesses are permitted,
this field has value 0b11.

RTID, bits[25:24]

Indicates the status of Root invasive debug.

If the MEM-AP does not implement the Realm Management Extension, this field has the value 0b00.

If the MEM-AP implements the Realm Management Extension and Root accesses are not permitted,
this field has value 0b10.

If the MEM-AP implements the Realm Management Extension and Root accesses are permitted,
this field has value 0b11.

Default

RO

RES0 RTNID RTID SUNID SUID

NSUNID

NSUID RLNID RLID

01

NSID

2567

SID

89

SNID

NSNID

1011

HID

1231 141516171825262728 2423 22 13192021

HNID

34
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-201
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
SUNID, bits[23:22]

Secure Unprivileged non-invasive debug.

This field always takes the value 0b00.

SUID, bits[21:20]

Secure Unprivileged invasive debug.

This field always takes the value 0b00.

NSUNID, bits[19:18]

Non-secure Unprivileged non-invasive debug.

This field always takes the value 0b00.

NSUID, bits[17:16]

Non-secure Unprivileged invasive debug.

This field always takes the value 0b00.

RLNID, bits[15:14]

Realm non-invasive debug.

If the MEM-AP does not implement the Realm Management Extension, this field has value 0b00.

If the MEM-AP implements the Realm Management Extension and Realm accesses are not
permitted, this field has value 0b10.

If the MEM-AP implements the Realm Management Extension and Realm accesses are permitted,
this field has value 0b11.

RLID, bits[13:12]

Realm invasive debug.

If the MEM-AP does not implement the Realm Management Extension, this field has value 0b00.

If the MEM-AP implements the Realm Management Extension and Realm accesses are not
permitted, this field has value 0b10.

If the MEM-AP implements the Realm Management Extension and Realm accesses are permitted,
this field has value 0b11.

HNID, bits[11:10]

Hypervisor non-invasive debug.

This field always takes the value 0b00.

HID, bits[9:8]

Hypervisor invasive debug.

This field always takes the value 0b00.

SNID, bits[7:6]

Secure noninvasive debug. This field can have one of the following values:

0b00 Secure noninvasive debug is not implemented, or the status of Secure noninvasive
debug is indicated elsewhere.

0b01 Reserved.

0b10 Secure noninvasive debug is not enabled.

0b11 Secure noninvasive debug is enabled.

When CSW.SDeviceEn == 0b1, this field has the value 0b11.

If the MEM-AP supports performing Secure accesses and CSW.SDeviceEn == 0b0, this field has
the value 0b10.

If the MEM-AP does not support performing Secure accesses, this field has the value 0b00.
C2-202 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
SID, bits[5:4]

Secure invasive debug. This field can have one of the following values:

0b00 Secure invasive debug is not implemented, or the status of Secure invasive debug is
indicated elsewhere.

0b01 Reserved.

0b10 Secure invasive debug is not enabled.

0b11 Secure invasive debug is enabled.

When CSW.SDeviceEn == 0b1, this field has the value 0b11.

If the MEM-AP supports performing Secure accesses and CSW.SDeviceEn == 0b0, this field has
the value 0b10.

If the MEM-AP does not support performing Secure accesses, this field has the value 0b00.

NSNID, bits[3:2]

Non-secure non-invasive debug. This field can have one of the following values:

0b00 Non-secure non-invasive debug is not implemented, or the status of Non-secure
noninvasive debug is indicated elsewhere.

0b01 Reserved.

0b10 Non-secure non-invasive debug is not enabled.

0b11 Non-secure non-invasive debug is enabled.

When CSW.DeviceEn == 0b1, this field has value 0b11.

When CSW.DeviceEn == 0b0, this field has value 0b10.

NSID, bits[1:0]

Non-secure invasive debug. This field can have one of the following values:

0b00 Non-secure invasive debug is not implemented, or the status of Non-secure invasive
debug is indicated elsewhere.

0b01 Reserved.

0b10 Non-secure invasive debug is not enabled.

0b11 Non-secure invasive debug is enabled.

When CSW.DeviceEn == 0b1, this field has value 0b11.

When CSW.DeviceEn == 0b0, this field has value 0b10.

Accessing AUTHSTATUS

AUTHSTATUS can be accessed at the following address:

C2.6.2 BASE, Debug Base Address register

The BASE characteristics are:

Purpose

BASE provides an index into the connected memory-mapped resource. This index value points to
one of the following:

• The start of a set of debug registers.

• A ROM Table that describes the connected debug components.

Offset

0xFB8
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-203
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
To discover information about the debug components that are connected to the MEM-AP, a
debugger can examine the four Component ID registers, CIDR0-CIDR3, which are at offset 0xFF0
from the base address. To examine CIDR<n>, the debugger writes its address, (base address + 0xFF0
+ n×4), to the TAR and reads the DRW register. The return value allows the debugger to determine
the component type of the connected component, which is one of the following:

• ROM Table

• Debug component

• Other

For more information about CIDR0-CIDR3, see the Arm® CoreSight™ Architecture Specification.

Usage constraints

The following constraints apply:

• If the bus supports both Secure and Non-secure address spaces, BASE is defined to be a
Non-secure address. Whether the ROM Tables are also accessible in the Secure address space
is IMPLEMENTATION DEFINED.

• A debugger must handle the following situations as non-fatal errors:

— The base address that is specified by BASEADDR is a faulting location.

— The four words starting at (base address + 0xFF0) are not valid Component ID
registers.

— An entry in the ROM Table points to a faulting location.

— An entry in the ROM Table points to a memory block that does not have a set of four
valid Component ID registers at offset 0xFF0.

Typically, a debugger issues a warning if it encounters one of these situations. However, Arm
recommends that it continues operating. An example of an implementation that might cause
errors of this type is a system with static base address or ROM Table entries that enable entire
subsystems to be disabled, for example by a tie-off input, packaging choice, fuse, or similar.

BASE is accessible as follows:

Configurations

In the 64-bit register implementation, the two words making up the register are not contiguous in
the MEM-AP programmers’ model.

Early implementations of the ADI had different implementations of BASE, as described in Legacy
format of BASE on page C2-206. The legacy format is a 32-bit register at offset 0xDF8.

When BASE is implemented as a 64-bit register, it can specify any address in a 64-bit physical
address space. However:

• Armv7-A PEs with the MMU disabled, and Armv7-R, Armv6-M, Armv7-M, and Armv8-M
PEs can access only a 32-bit physical address space.

Therefore, Arm recommends that all debug components:

• Are located in the bottom 4GB of the physical address space.

• Are located in one 2GB half of the physical address space.

Attributes

A 32-bit or 64-bit read-only register.

Default

RO
C2-204 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Field Descriptions

The BASE bit assignments are:

BASEADDR[63:32], bits[31:0] of word at offset 0xDF0, 64-bit register only
BASEADDR[31:12], bits[31:12] of word at offset 0xDF8

The 20 or 52 most significant bits of the base address, which is the address offset of the start of the
debug register space in the memory-mapped resource, or a ROM Table address. BASEADDR is
padded with the 12-bit value 0x000 to complete the 32-bit or 64-bit base address.

If BASE is implemented as a 32-bit register, the word at offset 0xDF0 is RES0.

The details of the memory area pointed to by the base address depend on the number of debug
components that are connected to the ADI:

• If the ADI is connected to a single debug component, as in the system that is shown in
Figure A1-4 on page A1-32, the base address is the start of the debug registers for that
component.

If a debug component occupies more than one 4KB page of memory, the base address is the
address of the 4KB page that contains the Peripheral ID and Component ID registers of the
component.

• If the ADI is connected to more than one debug component, as in the system that is shown in
Figure A1-7 on page A1-34, the base address is the address of a ROM Table, which contains
the addresses of the other debug components that are connected to the interface. For
information about ROM Tables, see Chapter D1 About ROM Tables.

A system that contains only a single debug component might be implemented with a separate
ROM Table, as shown in Figure A1-6 on page A1-33. In this case, the base address is the
address of the ROM Table.

Bits[11:2] of word at offset 0xDF8

Reserved, RES0.

Format, bit[1] of word at offset 0xDF8

Base address register format.

This field is RAO, indicating the ADIv6 format.

Note

This bit is RAZ in one of the legacy Debug Base Address register formats, see Legacy format of
BASE on page C2-206.

P, bit[0] of word at offset 0xDF8

This field indicates whether a debug entry for this MEM-AP is present:

0b0 No debug entry is present.

0b1 Debug entry is present.

Note

Legacy format of BASE on page C2-206 includes a description of the legacy format of the BASE
register when there is no debug entry present.

BASEADDR[31:12]

31 12 11 2 0

RES0 1 P

1

Format

word at
offset
0xDF0

64-bit implementations: BASEADDR[63:32]
32-bit implementations: RES0

31 0

word at
offset
0xDF8
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-205
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Accessing BASE

BASE can be accessed from the MEM-AP register space:

Legacy format of BASE

The legacy format of BASE is as follows:

Legacy format when no debug entries are present

The legacy format of BASE when there are no debug entries present is:

NOTPRESENT, bits[31:0]

This field has the value 0xFFFFFFFF, indicating that there are no debug entries.

Legacy format for specifying BASEADDR

When bit[1] of the BASE register is 0b0, the legacy format of the register holds the base address
value. This format is:

BASEADDR, bits[31:12]

Bits[31:12] of the base address. Bits[11:0] of the base address are zero.

Bits[11:2]

Reserved, RAZ.

FORMAT, bit[1]

RAZ, indicating that the BASE register uses the legacy 32-bit BASE register format.

Bit[0] Reserved, RAZ.

The legacy format is defined only for 32-bit addresses and not permitted for a MEM-AP that
implements the Large Physical Address Extension.

The legacy format must not be used for new ADI designs.

C2.6.3 BD0-BD3, Banked Data registers

The BD0-BD3 register characteristics are:

Purpose

BD0-BD3 map AP accesses directly to memory accesses, without having to change the value in the
TAR. Together, BD0-BD3 give access to four words of the memory space, starting at the address
that is specified in the TAR.

Each Banked Data register holds a 32-bit data value:

• In write mode, a Banked Data register holds a value to write to memory.

• In read mode, a Banked Data register holds a value that is read from memory.

Usage Constraints

Auto address incrementing is not performed when a Banked Data register is accessed. The value of
CSW.AddrInc has no effect on Banked Data register accesses.

The Large Data Extension supports memory access size values that are greater than word size, as
described in Variable access size for memory accesses.

• If the Large Data Extension is implemented, accesses other than word or doubleword are
UNPREDICTABLE.

Offset if Large Physical
Address extension is
not implemented

Offset if Large Physical Address extension is
implemented

Least significant word Most significant word

0xDF8 0xDF8 0xDF0
C2-206 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
• If the Large Data Extension is not implemented, accesses other than word are
UNPREDICTABLE.

BD0-BD3 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Four 32-bit read/write registers.

Field Descriptions

The BD0-BD3 bit assignments are:

Banked data, BD0-BD3 bits[31:0]

Data values for the current transfer.

See Accessing BD0-BD3 for more information about BD register accesses.

Accessing BD0-BD3

BD0-BD3 can be accessed from the MEM-AP register space.

If the Large Physical Address Extension is not implemented, BD0-BD3 can be accessed at the following offsets:

Default

RW

Register Offset
Memory Address that is accessed

Word Accessa Doubleword Accessb

BD0 0x10 TAR[31:4] << 4 TAR[31:4] << 4, accessed first

BD1 0x14 (TAR[31:4] << 4) + 0x4 TAR[31:4] << 4, accessed second

BD2 0x18 (TAR[31:4] << 4) + 0x8 (TAR[31:4] << 4) + 0x8, accessed first

BD3 0x1C (TAR[31:4] << 4) + 0xC (TAR[31:4] << 4) + 0x8, accessed second

31 0

banked data 0xD1CBD3

31 0

banked data 0xD18BD2

31 0

banked data 0xD14BD1

31 0

banked data 0xD10BD0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-207
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
If the Large Physical Address Extension is implemented, BD0-BD3 can be accessed at the following offsets:

An access to a Banked Data register initiates an access to the memory address shown in the table. The AP access
does not complete until the memory access has completed.

If the access size specified in CSW.Size is doubleword, the lower-numbered register holds the least significant
word, and the higher-numbered register holds the most significant word. To access a value, a debugger must access
both registers of the pair making up the doubleword, where the lower-numbered register is accessed first.

For example, if the Large Physical Address Extension is implemented, to read the doubleword value at
(TAR[63:4] << 4), a debugger must:

1. Read BD0, to obtain bits[31:0] of the doubleword.

2. Read BD1, to obtain bits[63:32] of the doubleword.

When CSW.Size specifies doubleword access size, the following restrictions apply to the two required BD register
accesses:

• The effect of mixing reads and writes in the sequence is UNPREDICTABLE.

• If CSW is accessed in the middle of the sequence, the following behavior is IMPLEMENTATION DEFINED:

— Whether the CSW access is successful.

— Whether the CSW access results in an error response from the AP.

• If CSW is accessed in the middle of the sequence, that sequence is terminated, and the next access to a
Banked Data register is the first access of a new sequence.

If a write sequence is terminated, no memory write is initiated.

• The effect of not accessing the appropriate register first is UNPREDICTABLE.

• After accessing the first Banked Data register of a pair, the effect of accessing any MEM-AP register other
than CSW or the second Banked Data register of the pair is UNPREDICTABLE. Examples of sequences that lead
to an UNPREDICTABLE result include:

— Accessing BD1 and then accessing BD2.

— Two consecutive accesses to the same Banked Data register.

Register Offset
Memory Address that is accessed

Word Accessa

a. Bits[1:0] of the address are always 0b00.

Doubleword Accessb

b. Bits[2:0] of the address are always 0b000.

BD0 0x10 TAR[63:4] << 4 TAR[63:4] << 4, accessed first

BD1 0x14 (TAR[63:4] << 4) + 0x4 TAR[63:4] << 4, accessed second

BD2 0x18 (TAR[63:4] << 4) + 0x8 (TAR[63:4] << 4) + 0x8, accessed first

BD3 0x1C (TAR[63:4] << 4) + 0xC (TAR[63:4] << 4) + 0x8, accessed second
C2-208 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6.4 CFG, Configuration register

The CFG characteristics are:

Purpose

CFG indicates whether the MEM-AP implementation includes the Large Data and Large Physical
Address Extensions.

Usage constraints

None.

CFG is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit read-only register.

The CFG bit assignments are:

Bits[31:26]

Reserved, RES0.

MECIDWIDTH, bits[25:20]

MEC Extension. Indicates the size of the MECID in bits. The defined values of this field are:

0b000000 MEC extension is not implemented.

0b000001 .. 0b010000

MEC extension is implemented.The value indicates the MECID width, in

bits.

See also MEM-AP Memory Encryption Contexts Extension on page C2-195.

TARINC, bits[19:16]

TAR incrementer size. This field has one of the following values:

0x0 The TAR incrementer size is not specified. If TARINC has this value, the TAR
incrementer size is at least 10 bits.

Any other value

The TAR incrementer size is 9+TARINC bits. The maximum TAR incrementer size is
24 bits, indicated by TARINC having the value 0xF.

See also Auto-incrementing the Transfer Address Register (TAR) on page C2-179.

Bits[15:12]

Reserved, RES0.

ERR, bits[11:8]

Default

RO

31 0123

MECIDWIDTH TARINC RES0 ERR DARSIZE

RME
LD
LA
BE

478111215161920

RES0

2526
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-209
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Identifies the type of error handling that is implemented. This field has one of the following values:

0b0000 Error response handling 0:

• Error responses are always passed upstream.

• TRR is not implemented.

• CSW.ERRNPASS and CSW.ERRSTOP are not implemented.

0b0001 Error response handling 1:

• TRR is implemented.

• CSW.ERRNPASS and CSW.ERRSTOP are implemented.

Any other value

Reserved.

See also Error Handling on page C2-182.

DARSIZE, bits[7:4]

Indicates the size of the DAR0-DAR255 register space. This field can have one of the following
values:

0b0000 DAR0-DAR255 are not implemented.

0b1010 DAR0-DAR255, which occupy a register space of 1KB, are implemented

Any other value

Reserved.

See also DAR0-DAR255, Direct Access registers on page C2-219.

RME, Bit[3]

Realm Management Extension. Indicates whether the MEM-AP includes the Realm Management
Extension. The defined values of this bit are:

0b0 Realm Management Extension not implemented

0b1 Realm Management Extension implemented

LD, bit[2] Large data. This bit indicates whether the MEM-AP implementation includes the Large Data
Extension, which provides support for data items larger than 32-bits. LD has one of the following
values:

0b0 The implementation does not support data items that are larger than 32 bits.

0b1 The implementation includes the Large Data Extension, and supports data items larger
than 32 bits.

For more information, see MEM-AP Large Data Extension on page C2-193.

Regardless of the value of the LD field, the MEM-AP must support word-size data items, and might
support smaller data items. See also CSW.Size.

LA, bit[1] Long address. This field indicates whether the MEM-AP implementation includes the Large
Physical Address Extension, which supports physical addresses of more than 32-bits. LA has one
of the following values:

0b0 The implementation support only physical addresses of 32 bits or smaller.

Memory locations for the TAR and BASE registers, which are at offsets 0xD08 and 0xDF0
in the MEM-AP register map, are reserved.

0b1 The implementation supports physical addresses with more than 32 bits:

• The TAR is a 64-bit register, at offsets 0xD04 and 0xD08 in the MEM-AP register
map.

• The BASE register is a 64-bit register, at offsets 0xDF8 and 0xDF0 in the MEM-AP
register map.

For more information, see MEM-AP Large Physical Address Extension on
page C2-193.

BE, bit[0] Big-endian. From ADIv5.2 onwards, support for big-endian MEM-APs is obsolete, and this bit
must RAZ. For more information, see Big-endian support on page C2-186.
C2-210 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Accessing CFG

CFG can be accessed from the MEM-AP register space:

Offset

0xDF4
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-211
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6.5 CFG1, Configuration register 1

The CFG1 characteristics are:

Purpose

CFG1 indicates the features of the implementation of the MEM-AP.

Usage constraints

CFG1 is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit read-only register.

Field descriptions

The CFG1 bit assignments are:

Bits[31:9]

Reserved, RES0.

TAG0GRAN, bits[8:4]

Memory tagging granule.

When Memory Tagging Extension implemented

0x04 Memory tagging granule is 16 bytes.

All other values are reserved.

Otherwise

Reserved, RES0.

TAG0SIZE, bits[3:0]

Memory tagging support. The defined values of this field are:

0x0 Memory Tagging Extension not implemented. T0TR not implemented. CSW.MTE is
not implemented.

0x4 Memory Tagging Extension implemented. Tag size is 4-bits. T0TR is implemented.
CSW.MTE is implemented.

All other values are reserved.

Default

RO

31 03

RES0

48

TAG0SIZETAG0GRAN

9

C2-212 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Accessing CFG1

CFG1 can be accessed from the MEM-AP register space:

C2.6.6 CIDR0-CIDR3, Component Identification Registers

This section describes the bit assignments for MEM-AP components. For a full description of the CIDR registers,
see Arm® CoreSight™ Architecture Specification.CIDR2

The CIDR0-CIDR3 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

CIDR0-CIDR3 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Four 32-bit management registers.

Field Descriptions

The CIDR0-CIDR3 bit assignments are:

CIDR3 bits[31:8]

RES0.

PRMBL_3, CIDR3 bits[7:0]

Offset

0xDE0

Default

RO

31 0

RES0 PRMBL_3

8 7

CIDR3 0xFFC

31 0

RES0 PRMBL_2

8 7

CIDR2 0xFF8

31 0

RES0 PRMBL_1

8 7

CLASS

4 3

CIDR1 0xFF4

31 0

RES0 PRMBL_0

8 7

CIDR0 0xFF0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-213
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
0xB1.

CIDR2 bits[31:8]

RES0.

PRMBL_2, CIDR2 bits[7:0]

0x05.

CIDR1 bits[31:8]

RES0.

CLASS, CIDR1 bits[7:4]

0x9 CoreSight component.

PRMBL_1, CIDR1 bits[3:0]

0x0.

CIDR0 bits[31:8]

RES0.

PRMBL_0, CIDR0 bits[7:0]

0x0D.

Accessing CIDR

CIDR0-CIDR3 can be accessed at the following address:

C2.6.7 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register

The CLAIMSET and CLAIMCLR characteristics are:

Purpose

The claim tags are used to communicate between different debug agents and to claim usage of an
APv2 AP. For detailed information, see CLAIMSET and CLAIMCLR, Claim Tag Set Register and
Claim Tag Clear Register on page C1-156.

Usage constraints

CLAIMSET and CLAIMCLR are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers.

Offset

CIDR0 CIDR1 CIDR2 CIDR3

0xFF0 0xFF4 0xFF8 0xFFC

CLAIMSET CLAIMCLR

RW RW
C2-214 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Field Descriptions

The CLAIMSET and CLAIMCLR bit assignments are:

CLAIMCLR bits[31:nTags]

RAZ/WI

CLR, CLAIMCLR bits[nTags-1:0]

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of bits
set in CLAIMSET.

Allowed values of CLR[n] are:

Write 0 No effect.

Write 1 Clear the claim tag for bit[n].

Read 0 The claim tag bit is not set.

Read 1 The claim tag bit is set.

CLAIMSET bits[31:nTags]

RAZ/WI

SET, CLAIMSET bits[nTags-1:0]

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of claim
bits that are implemented.

Permitted values of SET[n] are:

Write 0 No effect.

Write 1 Set the claim tag for bit[n].

Read 0 The claim tag that is represented by bit[n] is not implemented.

Read 1 The claim tag that is represented by bit[n] is implemented.

Accessing CLAIMSET CLAIMCLR

CLAIMSET and CLAIMCLR can be accessed at the following addresses:

Offset

CLAIMSET CLAIMCLR

0xFA0 0xFA4

31 0

CLRRAZ/WI

nTags-1nTags

CLAIMCLR 0xFA4

31 0

SETRAZ/WI

nTags-1nTags

CLAIMSET 0xFA0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-215
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6.8 CSW, Control/Status Word register

The CSW characteristics are:

Purpose

CSW configures and controls accesses through the MEM-AP to or from a connected memory
system.

Usage constraints

None

CSW is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit read/write register.

Field Descriptions

The CSW bit assignments are:

DbgSwEnable, bit[31]

Debug software access enable.

This field is optional. If not implemented, it is RAZ.

If implemented, it has one of the following values:

0b0 Debug software access is disabled. If DeviceEn is 0b0, DbgSwEnable must be ignored
and treated as one.

0b1 Debug software access is enabled.

The use of this field is IMPLEMENTATION DEFINED, see Software access control on page C2-190.

Prot, bits[30:24]

Used with the Type field to define the bus access protection control.

A debugger can use these fields to specify flags for a debug access. The permitted values and their
significance are IMPLEMENTATION DEFINED, and depend on the underlying bus architecture. For
more information, see Implementing a MEM-AP on page C2-192.

These fields are OPTIONAL. If not implemented, they are RES0.

SDeviceEn, bit[23]

Secure Debug Enabled. This field has one of the following values:

0b0 Secure access is disabled.

0b1 Secure access is enabled.

Default

RW

31 30 24 2322 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SDeviceEn

15161718

ERRNPASS
ERRSTOP

PROT RMEEN Mode Size

DbgSwEnable RES0

2

MTE

14

TypeRES0

2021
C2-216 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
This field is OPTIONAL, and read-only. If not implemented, the bit is RES0.

If CSW.DeviceEn is 0b0, SDeviceEn is ignored and the effective value of SDeviceEn is 0b0.

For more information, see Enabling access to the connected debug device or memory system on
page C2-177.

Note
In ADIv5 and older versions of the architecture, the CSW.SPIDEN field is in the same bit position
as CSW.SDeviceEn, and has the same meaning. From ADIv6, the name SDeviceEn is used to avoid
confusion between this field and the SPIDEN signal on the authentication interface.

RMEEN, Bits[22:21]

Realm and Root access status.

When CFG.RME == 0b1

The defined values of this field are:

0b00 Realm and Root accesses are disabled

0b01 Realm access is enabled. Root access is disabled.

0b11 Realm access is enabled. Root access is enabled.

Otherwise

Reserved. This field is RES0.

All other values are reserved.

This field is read-only.

Bits[20:18]

Reserved, RES0.

ERRSTOP, bit[17]

Errors prevent future memory accesses. This field has one of the following values:

0b0 Memory access errors do not prevent future memory accesses.

0b1 Memory access errors prevent future memory accesses.

The reset value of this field is UNKNOWN.

CFG.ERR indicates whether this field is implemented.

ERRNPASS, bit[16]

Errors are not passed upstream. This field has one of the following values:

0b0 Errors are passed upstream.

0b1 Errors are not passed upstream.

The reset value of this field is UNKNOWN.

CFG.ERR indicates whether this field is implemented.

Type, bits [15:12], when Memory tagging control is not implemented.

Used with the Prot field to define the bus access protection control.

A debugger can use these fields to specify flags for a debug access. The permitted values and their
significance are IMPLEMENTATION DEFINED, and depend on the underlying bus architecture. For
more information, see Implementing a MEM-AP on page C2-192.

This field is OPTIONAL. If not implemented, it is RES0.

MTE, bit [15], when Memory tagging control is implemented.

Memory Tagging control. The possible values of this bit are:

0b0 Memory tagging accesses disabled.

0b1 Memory tagging accesses enabled.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-217
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
When memory tagging accesses are enabled, system read and write accesses via DRW, BD0-BD3,
and DAR0-DAR255, use T0TR for transferring tag information.

Type, bits [14:12], when Memory tagging control is implemented.

Used with the Prot field to define the bus access protection control.

A debugger can use these fields to specify flags for a debug access. The permitted values and their
significance are IMPLEMENTATION DEFINED, and depend on the underlying bus architecture. For
more information, see Implementing a MEM-AP on page C2-192.

This field is OPTIONAL. If not implemented, it is RES0.

Mode, bits[11:8]

Mode of operation of the MEM-AP. This field has one of the following values:

0b0000 Basic mode.

0b0001 Barrier support enabled. For more information, see MEM-AP Barrier Operation
Extension on page C2-194.

Other Reserved.

The set of supported modes is IMPLEMENTATION DEFINED. If the implementation supports only one
mode, this field can be RO.

If this field is RW, the reset value of this field is UNKNOWN.

TrInProg, bit[7]

Transfer in progress. This field has one of the following values:

0b0 The connection to the memory system is idle.

0b1 A transfer is in progress on the connection to the memory system.

After an ABORT operation, debug software can read this bit to check whether the aborted
transaction completed.

DeviceEn, bit[6]

Device enabled.

This field has one of the following values:

0b0 The MEM-AP is not enabled.

0b1 Transactions can be issued through the MEM-AP.

See Enabling access to the connected debug device or memory system on page C2-177.

This field is read-only.

AddrInc, bits[5:4]

Address auto-increment and packing mode. This field controls whether the access address
increments automatically on read and write data accesses through the DRW register. For more
information, see Auto-incrementing the Transfer Address Register (TAR) on page C2-179 and
Packed transfers on page C2-187.

Address auto-increment and packing mode. The possible values are of this field are:

0b00 Address auto-increment disabled.

0b01 Address increment-single enabled.

0b10 Address increment-packed enabled.

All other values are reserved.

The reset value of this field is UNKNOWN.

Bit[3]

Reserved, RES0.

Size, bits[2:0]
C2-218 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
The size of the data type that is used to access the MEM-AP, as shown in Table C2-10 on
page C2-219.

It is IMPLEMENTATION DEFINED whether a MEM-AP supports access sizes other than 32-bits, and
whether the Size field is RW or RO:

• If other sizes are supported, the Size field is RW, and the field indicates the size of the
accesses to perform. When this field is RW, its reset value is UNKNOWN.

• If other sizes are not supported, this field is RO and it reads as 0b010 to indicate that only
32-bit accesses are supported.

Accessing CSW

CSW can be accessed from the MEM-AP register space:

C2.6.9 DAR0-DAR255, Direct Access registers

The DAR0-DAR255 characteristics are:

Purpose

DAR0-DAR255 map AP accesses directly to memory accesses, without having to change the value
in the TAR. Together, the 256 Direct Access Registers give access to 1KB of the memory space,
which starts at the address that is specified in the TAR.

Each DAR<n> holds a 32-bit data value:

• In write mode, a DAR<n> holds a value to write to memory.

• In read mode, a DAR<n> holds a value that is read from memory.

Usage Constraints

Table C2-10 Size field values

Size Field Data Type Supported

0b000 Byte (8-bits) IMPLEMENTATION DEFINED

0b001 Halfword (16-bits) IMPLEMENTATION DEFINED

0b010 Word (32-bits) Yesa

a. On a MEM-AP implementation that does not support access sizes other than word, the
Size field is read-only, and always returns the value 0b010.

0b011b

b. Supported by the MEM-AP Large Data Extension, see MEM-AP Large Data
Extension on page C2-193. The following usage constraints apply:

If the extension is not implemented, this value is reserved.

If a reserved value, or a value corresponding to an unsupported access size, is written
to this field, reading the field returns the value corresponding to a supported size, and
the MEM-AP behaves according to the return value.

Doubleword (64-bits) IMPLEMENTATION DEFINED

0b100b 128-bits IMPLEMENTATION DEFINED

0b101b 256-bits IMPLEMENTATION DEFINED

0b110 - 0b111 Reserved -

Offset

0xD00
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-219
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Auto address incrementing is not performed when a DAR<n> is accessed. The value of
CSW.AddrInc has no effect on DAR accesses.

The Large Data Extension supports memory access size values that are greater than word size, as
described in Variable access size for memory accesses. If the CSW.Size field is set to one of these
memory access sizes, the following rules apply:

• A memory access involves accessing multiple DARs:

— The number of DAR accesses is equal to the number of words in the memory access
size.

— The number n of the first DAR<n> to be accessed must be aligned to the number of
words in the memory access size.

For the memory widths that are supported by the Large Data Extension, the rules work out as
follows:

— Accessing two consecutive DARs returns a doubleword from memory address
((TAR[63:10]<<10) + (n×8)), where the first access must be to DAR<n×2>, where n
is between 0 and 127.

— Accessing four consecutive DARs returns a 128-bit word from memory address
((TAR[63:10]<<10) + (n×16)), where the first access must be to DAR<n×4>, where n
is between 0 and 63.

— Accessing eight consecutive DARs returns a 256-bit word from memory address
((TAR[63:10]<<10) + (n×32)), where the first access must be to DAR<n×8>, where n
is between 0 and 31.

For example, to read the doubleword value at ((TAR[63:10] << 10) + 32), a debugger must:

1. To obtain bits[31:0] of the doubleword, read DAR<4>.

2. To obtain bits[63:32] of the doubleword, read DAR<5>.

• A debugger must access all registers of a sequence making up the targeted size, in the order
of the DAR number.

• The words that are returned by a sequence of DARs are increasingly significant as the DAR
number increases.

• The following restrictions apply to a sequence of DAR accesses:

— The effect of mixing reads and writes in the sequence is UNPREDICTABLE.

— If CSW is accessed in the middle of the sequence, that sequence is terminated, and the
next access to a DAR<n> is the first access of a new sequence.

If a write sequence is terminated, no memory write is initiated.

— The effect of not accessing the appropriate DAR<n> first is UNPREDICTABLE.

— After accessing the first DAR<n> of a sequence, the effect of accessing any MEM-AP
register other than CSW or the next DAR<n> in the sequence is UNPREDICTABLE.

Examples of sequences that lead to an UNPREDICTABLE result include:

— Accessing a DAR<n> that forms the last word of a sequence first, and then accessing
the first DAR<n> of the next sequence.

— Two consecutive accesses to the same DAR<n>.

If the CSW.Size field is set to byte or halfword, accesses using DAR <n> are UNPREDICTABLE.

Accessing a sequence of DARs to access a memory width that is greater than word size has the
following effects:

• When reading from memory, the first DAR<n> access in a sequence initiates a memory
access.

• When writing to memory, the last DAR<n> access in a sequence initiates a memory access.

• The TAR is incremented after the last DAR<n> access in a sequence.

• The AP access does not complete until the associated memory access has completed.
C2-220 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
DAR0-DAR255 are accessible as follows:

Configurations

Implemented when CFG.DARSIZE is not zero.

Attributes

A set of 256 32-bit read/write registers.

Field Descriptions

The DAR0-DAR255 bit assignments are shown in the following diagram, where <n> is between 0 and 255:

Directly accessed data, DAR0-DAR255 bits[31:0]

Data values for the current transfer, as subjected to the rules mentioned in the usage constraints.

Accessing DAR0-DAR255

DAR<n>, where 0 ≤ n ≤ 255, can be accessed from the MEM-AP register space:

C2.6.10 DEVAFF0-DEVAFF1, Device Affinity Registers

The DEVAFF0-DEVAFF1 characteristics are:

Purpose

Enables a debugger to determine whether two components have an affinity with each other.

Usage constraints

DEVAFF0-DEVAFF1 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers.

Default

RW

31 0

accessed data 0x000 + (n×4)DAR<n>

Offset

0x000 + (n×4)

Default

RO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-221
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Field Descriptions

The DEVAFF0-DEVAFF1 bit assignments are:

DEVAFF0, bits[31:0]
DEVAFF1, bits[31:0]

RES0.

Accessing DEVAFF0-DEVAFF1

DEVAFF0-DEVAFF1 can be accessed at the following addresses:

C2.6.11 DEVARCH, Device Architecture Register

The DEVARCH characteristics are:

Purpose

Identifies the architect and architecture of a CoreSight component.

Usage constraints

DEVARCH is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Offset

DEVAFF0 DEVAFF1

0xFA8 0xFAC

31 0

IMPLEMENTATION DEFINEDDEVAFF1 0xFAC

31 0

IMPLEMENTATION DEFINEDDEVAFF0 0xFA8

Default

RO
C2-222 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Field Descriptions

The DEVARCH bit assignments are:

ARCHITECT, bits[31:21]

0x23B Arm.

PRESENT, bit[20]

0b1 Present.

REVISION, bits[19:16]

0x0 Revision 0.

ARCHID, bits[15:0]

For an APv2 MEM-AP, this field has the following value:

0x0A17 MEM-AP.

Accessing DEVARCH

DEVARCH can be accessed at the following address:

C2.6.12 DEVID, Device Configuration Register

The DEVID characteristics are:

Purpose Indicates the capabilities of the component.

Usage constraints DEVID is accessible as follows:

Configurations Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVID bit assignments are:

Bits[31:0]

Offset

0xFBC

PRESENT

31 0

ARCHIDARCHITECT 1 REVISION

21 20 19 16 15

Default

RO

31 0

RES0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-223
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
RES0.

Accessing DEVID

DEVID can be accessed at the following address:

C2.6.13 DEVID1-DEVID2, Device Configuration Registers

The DEVID1-DEVID2 characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

DEVID1-DEVID2 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers.

Field Descriptions

The DEVID1-DEVID2 bit assignments are:

DEVID1, bits[31:0]
DEVID2, bits[31:0]

RES0.

Offset

0xFC8

Default

RO

31 0

RES0DEVID1 0xFC4

31 0

RES0DEVID2 0xFC0
C2-224 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Accessing DEVID1-DEVID2

DEVID1-DEVID2 can be accessed at the following addresses:

C2.6.14 DEVTYPE, Device Type Register

The DEVTYPE characteristics are:

Purpose

A debugger can use DEVTYPE to obtain information about a component that has an unrecognized
Part number.

Usage constraints

DEVTYPE is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVTYPE bit assignments are:

Bits[31:8]

RES0.

SUB, bits[7:4]

0x0 Other, undefined.

MAJOR, bits[3:0]

0x0 Miscellaneous.

Accessing DEVTYPE

DEVTYPE can be accessed at the following address:

Offset

DEVID1 DEVID2

0xFC4 0xFC0

Default

RO

Offset

0xFCC

31 0

MAJORRES0

4 3

SUB

8 7
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-225
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6.15 DRW, Data Read/Write register

The DRW characteristics are:

Purpose

DRW maps the value that is passed in an AP access directly to one or more memory accesses at the
address that is specified in the TAR.

The value depends on the access mode:

• In write mode, DRW holds the value to write for the current transfer to the address specified
in the TAR.

• In read mode, DRW holds the value that is read in the current transfer from the address that
is specified in the TAR.

The AP access does not complete until the memory access, or accesses, complete.

Usage constraints

MEM-AP implementations that include the Large Data Extension enable accessing values with a
data type that is larger than the size of DRW, which requires multiple access to DRW to complete a
single memory access, as shown in Table C2-11.

Memory accesses that involve multiple DRW accesses have the following limitations:

• The effect of mixing reads and writes in the sequence is UNPREDICTABLE.

• An access to CSW in the middle of a sequence terminates that sequence. The next access to
DRW is the first access of a new sequence. If a write sequence is terminated, no memory
write is initiated.

• After the first DRW access of the sequence, the effect of accessing any MEM-AP register
other than CSW or DRW is UNPREDICTABLE.

• Depending on the value of CSW.AddrInc, the TAR might be incremented after each DRW
access. See Auto-incrementing the Transfer Address Register (TAR) on page C2-179.

DRW is accessible as follows:

Default

RW

Table C2-11 DRW access behavior for different data type sizes

Size of
data
type

CSW.Size

Required
number of
DRW
accesses

Read behavior Write behavior

8 bitsa,b 0b000 1 Each read initiates a memory access and
returns the value to be read using byte
lanes.

Each write initiates a memory access and
writes the value to be written using byte
lanes. 16 bitsa,b 0b001 1

32 bitsc 0b010 1 Each read initiates a memory access and
returns the value to be read.

Each write initiates a memory access and
writes the value to be written.
C2-226 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Configurations

A MEM-AP register. The MEM-AP Large Data Extension, described in MEM-AP Large Data
Extension on page C2-193, modifies the behavior of this register for accesses with CSW.Size set to
a value larger than 0b010.

Attributes

A 32-bit MEM-AP register.

Field Descriptions

The DRW bit assignments are:

Data, bits[31:0]

Data value of the current transfer.

Accessing DRW

DRW can be accessed from the MEM-AP register space:

64 bitsd 0b011 2 On first read:

• Initiate a memory access.

• Return the least significant 32-bit
word of the value being read.

On subsequent reads:

• Do not initiate another memory
access.

• Return the next 32-bit word of the
value being read.

On the first read, the AP access does not
complete until the memory access
completes.

On writes before the last write:

• Specify the next 32-bit word of the
value to be written, starting from the
least significant word.

• Do not initiate a memory access.

On last write:

• Specify the most significant 32-bit
word of the value to be written.

• Initiate a memory access.

On the last write, the AP access does not
complete until the memory access
completes.

128 bitsd 0b100 4

256 bitsd 0b101 8

a. Support is IMPLEMENTATION DEFINED.

b. A single access to DRW might result in multiple memory accesses, depending on the values of CSW.AddrInc. See Packed transfers on
page C2-187.

c. Supported by all MEM-AP implementations.

d. Might be supported by MEM-AP applications that include the Large Data Extension. Support is IMPLEMENTATION DEFINED.

Table C2-11 DRW access behavior for different data type sizes (continued)

Size of
data
type

CSW.Size

Required
number of
DRW
accesses

Read behavior Write behavior

Offset

0xD0C

Data

31 0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-227
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6.16 IDR, Identification Register

The IDR characteristics are:

Purpose

IDR identifies the AP.

Usage constraints

The value of the register after a reset is IMPLEMENTATION DEFINED.

IDR is accessible as follows:

Configurations

Included in all implementations.

APs that comply with the ADIv6 specification must implement the JEP106 code and
provide a value in the REVISION and CLASS fields.

Attributes

A 32-bit read-only register.

Field Descriptions

The IDR bit assignments are:

REVISION, bits[31:28]

Starts at 0x0 for the first implementation of an AP design, and increments by one on each major or
minor revision of the design. Major design revisions introduce functionality changes, minor
revisions are bug fixes.

DESIGNER, bits[27:17]

Code that identifies the designer of the AP.

This field indicates the designer of the AP and not the implementer, except where the two are the
same. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit. For example,
Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

The encoding that is used in the IDR is as follows:

• The JEP106 continuation code, IDR bits[27:24], is the number of times that 0x7F appears
before the final number. For example, for Arm Limited this field is 0x4.

• The JEP106 identification code, IDR bits[23:17], equals bits[6:0] of the final number of the
JEDEC code. For example, for Arm Limited this field is 0x3B.

Default

RO

TYPEDESIGNERREVISION

31 28 27 17 16 4 3 0

CLASS RES0 VARIANT

1213 8 7
C2-228 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Note

The JEP106 codes are assigned by JEDEC to identify the manufacturer of a device. However, in the
AP Identification register they identify the designer of the AP.

An implementer of an Arm MEM-AP or JTAG-AP must not change these AP Identification
Register values.

Note

For backwards compatibility, debuggers must treat an AP return a JEP106 field of zero as an AP
designed by Arm. This encoding was used in early implementations of the ADI. In such an
implementation, the REVISION and CLASS fields are also RAZ.

APs that comply with the ADIv6 specification must use the JEP106 code and provide a value in the
REVISION and CLASS fields.

CLASS, bits[16:13]

Defines the class of AP. If an AP follows a programmers’ model that is defined as part of the ADIv6
specification or extensions to it, it belongs to a class. This field can have the following values:

0b0000 No defined class.

0b1000 MEM-AP. See Chapter C2 The Memory Access Port.

Bits[12:8] Reserved, RES0. This field is reserved for future ID register fields. If a debugger reads a non-zero
value in this field, it must treat the AP as unidentifiable.

VARIANT, bits[7:4]

Together with the TYPE field, this field identifies the AP implementation. VARIANT differentiates
AP implementations that have the same value of TYPE.

Each AP designer must maintain their own list of implementations and associated AP Identification
codes.

TYPE, bits[3:0]

Indicates the type of bus, or other connection, that connects to the AP. Table C2-12 lists the possible
values of the Type field for an AP designed by Arm. It also shows the value of the CLASS field,
which corresponds to bits[16:13] of the IDR, for each value of TYPE.

Together with the VARIANT field, this field identifies the AP implementation. AP implementations
that have the same value of TYPE are differentiated by their VARIANT value.

Each AP designer must maintain their own list of implementations and associated AP Identification
codes.

Table C2-12 AP Identification types for an AP designed by Arm

TYPE Connection to AP CLASS Notes

0x0 JTAG connection 0b0000 VARIANT field, bits [7:4] of
IDR, must be non-zero.

0x1 AMBA AHB3 bus 0b1000 -

0x2 AMBA APB2 or APB3 bus 0b1000 -

0x4 AMBA AXI3 or AXI4 bus, with
optional ACE-Lite support

0b1000 -

0x5 AMBA AHB5 bus 0b1000 -

0x6 AMBA APB4 and APB5 bus 0b1000 -
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-229
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Accessing IDR

IDR can be accessed at the following address:

C2.6.17 ITCTRL, Integration Mode Control Register

The ITCTRL characteristics are:

Purpose

A component can use this register to dynamically switch between functional mode and
integration mode.

In integration mode, topology detection is enabled.

Usage constraints

After switching to integration mode and performing integration tests or topology detection,
reset the system to ensure correct behavior of CoreSight and other connected system
components.

ITCTRL is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

0x7 AMBA AXI5 bus 0b1000 -

0x8 AMBA AHB5 with enhanced
HPROT.

0b1000 -

Othera Reserved - -

a. Any value other than 0x0, 0x1, 0x2, or 0x4.

Offset

0xDFC

Table C2-12 AP Identification types for an AP designed by Arm (continued)

TYPE Connection to AP CLASS Notes

Default

RW
C2-230 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Field Descriptions

The ITCTRL bit assignments are:

Bits[31:1]

RES0.

IME, bits[0] Permitted values of IME are:

0 The component must enter functional mode.

1 The component must enter integration mode, and enable support for topology
detection and integration testing.

When no integration functionality is implemented, this field is RES0.

Accessing ITCTRL

ITCTRL can be accessed at the following address:

C2.6.18 LAR and LSR, Lock Access Register and Lock Status Register

The LAR and LSR characteristics are:

Purpose

The Software Lock mechanism prevents accidental access to the registers of CoreSight components.

For an AP, the lock mechanism is not implemented.

Usage constraints

LAR and LSR are accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of 32-bit registers.

Offset

0xF00

RES0

31 01

IME

LAR LSR

WO RO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-231
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
Field Descriptions

The LAR and LSR bit assignments are:

LSR, bits[31:3]

RES0.

nTT, LSR bit[2]

RAZ.

SLK, LSR bit[1]

RAZ.

SLI, LSR bit[0]

RAZ.

KEY, LAR bits[31:0]

WI.

Accessing LAR and LSR

LAR and LSR can be accessed at the following addresses:

Offset

LAR LSR

0xFB0 0xFB4

RES0

31 03 2 1

nTT
SLK
SLI

LSR 0xFB4

31 0

KEYLAR 0xFB0
C2-232 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6.19 MBT, Memory Barrier Transfer register

The MBT register characteristics are:

Purpose

MBT generates a barrier operation on the bus.

Usage constraints

If CSW.Mode has a value other than 0b0001, writes to this register are ignored.

MBT is accessible as follows:

Configurations

If the Barrier Operation Extension is not implemented, the MBT register is reserved, RES0.

The MBT register is implemented only if the MEM-AP implementation includes the MEM-AP
Barrier Operation Extension, see MEM-AP Barrier Operation Extension on page C2-194.

Attributes A 32-bit MEM-AP register.

The MBT register is at offset 0xD20 in the MEM-AP register space.

Other properties of the register are IMPLEMENTATION DEFINED.

Field Descriptions

The MBT bit assignments are:

Bits[31:0]

IMPLEMENTATION DEFINED.

Accessing MBT

MBT can be accessed from the MEM-AP register space:

Default

IMPLEMENTATION DEFINED

Offset

0xD20

IMPLEMENTATION DEFINED

31 0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-233
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6.20 MECID, MECID value register

The MECID characteristics are:

Purpose

Provides the MECID value for transactions.

Usage constraints

None

MECID is accessible as follows:

Configurations

MECID is present only if CFG.MECIDWIDTH != 0b000000. MECID is RES0 otherwise.

Attributes

A 32-bit read/write register.

Field Descriptions

The MECID bit assignments are:

Bits[31:16]

Reserved, RES0.

MECID, bits[15:0]

MECID value.

The size of this field is indicated by CFG.MECIDWIDTH. For a size smaller than 16 bits, the upper
unused bits are RES0.

This field must be programmed with a MECID value that is suitable for the PA space being
accessed. For a PA space that does not support MEC, a value of zero is appropriate.

The reset value of this field is 0x0000.

Accessing MECID

MECID can be accessed from the MEM-AP register space:

C2.6.21 PIDR0-PIDR7, Peripheral Identification Register

This section describes the bit assignments for MEM-AP components. PIDR2PIDR3PIDR4

Default

RW

Offset

0xDDC

MECID

31 01516

RES0
C2-234 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
The PIDR0-PIDR7 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

PIDR0-PIDR7 are accessible as follows:

Configurations

Included in all implementations.

Attributes Eight 32-bit management registers.

Field Descriptions

The PIDR0-PIDR7 bit assignments are:

Default

RO

31 0

RES0

8 7

CMODREVAND

4 3

PIDR_3 0xFEC

JEDEC

31 0

RES0

8 7

DES_1REVISION

4 3

1

2

PIDR_2 0xFE8

31 0

RES0 PART_1

8 7

DES_0

4 3

PIDR_1 0xFE4

31 0

RES0 PART_0

8 7

PIDR_0 0xFE0

31 0

RES0PIDR_7 0xFDC

31 0

RES0PIDR_6 0xFD8

31 0

RES0PIDR_5 0xFD4
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-235
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
PIDR3 bits[31:8]

RES0.

REVAND, PIDR3 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

CMOD, PIDR3 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR2 bits[31:8]

RES0.

REVISION, PIDR2 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

JEDEC, PIDR2 bits[3]

0b1 A JEDEC value is used.

DES_1, PIDR2 bits[2:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR1 bits[31:8]

RES0.

DES_0, PIDR1 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PART_1, PIDR1 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR0 bits[31:8]

RES0.

PART_0, PIDR0 bits[7:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR7 bits[31:0]

RES0.

PIDR6 bits[31:0]

RES0.

PIDR5 bits[31:0]

RES0.

PIDR4 bits[31:8]

RES0.

SIZE, PIDR4 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

31 0

RES0

8 7

DES_2SIZE

4 3

PIDR_4 0xFD0
C2-236 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
DES_2, PIDR4 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

Accessing PIDR0-PIDR7

PIDR0-PIDR7 can be accessed at the following address:

C2.6.22 TAR, Transfer Address Register

The TAR characteristics are:

Purpose

The TAR holds the memory address to be accessed through AP accesses.

Note

The address that is held in the TAR represents an address in the memory system to which the
MEM-AP is connected. It is not an address within the MEM-AP itself.

Configurations and Usage constraints

When using the DRW, the TAR specifies the memory address to access:

• If the MEM-AP does not support accesses smaller than word, TAR[1:0] is RES0.

• The contents of the TAR can be incremented automatically on a successful DRW access, see
Auto-incrementing the Transfer Address Register (TAR) on page C2-179.

When accessing memory through BD0-BD3, Banked Data registers on page C2-206, bits [3:0] of
the TAR are ignored, and TAR[63:4] or TAR[31:4] specifies the base address of the 16-byte block
of memory that can be accessed.

The size and reset value of this register are as follows:

TAR is accessible as follows:

Attributes

Offset

PIDR0 PIDR1 PIDR2 PIDR3 PIDR4 PIDR5 PIDR6 PIDR7

0xFE0 0xFE4 0xFE8 0xFEC 0xFD0 0xFD4 0xFD8 0xFDC

Large Physical
Address
Extension

TAR Size
(bits)

Reset Value

Least significant word
(offset 0xD04)

Most significant word
(offset 0xD08)

No 32 UNKNOWN -

Yes 64 UNKNOWN 0x00000000

Default

RW
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-237
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
A 32-bit or 64-bit MEM-AP register.

Field Descriptions

The TAR bit assignments are:

Address[63:32], bits[31:0] of the register word at offset 0xD08

Most significant word of the memory address for the current transfer.

If the MEM-AP implementation does not include the Large Physical Address Extension, this field
is RES0.

Address[31:0], bits[31:0] of the register word at offset 0xD04

Least significant word of the memory address for the current transfer.

Accessing TAR

TAR can be accessed from the MEM-AP register space:

Offset

Least significant word Most significant worda

a. Applicable only to MEM-AP implementations with a
Large Physical Address Extension.

0xD04 0xD08

Address[31:0]

31 0

0xD08Implementations without Large Physical Address extension: RES0
Implementations with Large Physical Address extension: Address[63:32]

31 0

0xD04
C2-238 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6.23 T0TR, Tag 0 Transfer register

The T0TR characteristics are:

Purpose

Stores tag values for transfers.

Usage constraints

T0TR is accessible as follows:

Configurations

Implemented when the MTE is implemented.

Attributes A 32-bit MEM-AP register.

Field Descriptions

The T0TR bit assignments are:

T7, bits[31:28]

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction
performed with address[6:4] == 0b111.

On writes, holds the Allocation tag value for the next system memory write transaction
performed with address[6:4] == 0b111.

This field resets to an architecturally UNKNOWN value on a Reset.

T6, bits[27:24]

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction
performed with address[6:4] == 0b110.

On writes, holds the Allocation tag value for the next system memory write transaction
performed with address[6:4] == 0b110.

This field resets to an architecturally UNKNOWN value on a Reset.

T5, bits[23:20]

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction
performed with address[6:4] == 0b101.

On writes, holds the Allocation tag value for the next system memory write transaction
performed with address[6:4] == 0b101.

This field resets to an architecturally UNKNOWN value on a Reset.

T4, bits[19:16]

Allocation tag value.

Default

RW

31 03

T4 T3 T2 T1

478111215161920

T5T6T7 T0

23242728
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-239
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
On reads, holds the Allocation tag value for the most recent system memory read transaction
performed with address[6:4] == 0b100.

On writes, holds the Allocation tag value for the next system memory write transaction
performed with address[6:4] == 0b100.

This field resets to an architecturally UNKNOWN value on a Reset.

T3, bits[15:12]

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction
performed with address[6:4] == 0b011.

On writes, holds the Allocation tag value for the next system memory write transaction
performed with address[6:4] == 0b011.

This field resets to an architecturally UNKNOWN value on a Reset.

T2, bits[11:8]

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction
performed with address[6:4] == 0b010.

On writes, holds the Allocation tag value for the next system memory write transaction
performed with address[6:4] == 0b010.

This field resets to an architecturally UNKNOWN value on a Reset.

T1, bits[7:4]

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction
performed with address[6:4] == 0b001.

On writes, holds the Allocation tag value for the next system memory write transaction
performed with address[6:4] == 0b001.

This field resets to an architecturally UNKNOWN value on a Reset.

T0, bits[3:0]

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction
performed with address[6:4] == 0b000.

On writes, holds the Allocation tag value for the next system memory write transaction
performed with address[6:4] == 0b000.

This field resets to an architecturally UNKNOWN value on a Reset.

Accessing T0TR

T0TR can be accessed from the MEM-AP register space:

Offset

0xD30
C2-240 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2.6.24 TRR, Transfer Response register

The TRR characteristics are:

Purpose

The TRR is used to capture whether an error response was received during a transaction, and to clear
any logged responses.

Usage constraints

TRR is accessible as follows:

Configurations

The TRR is implemented when Error response handling version 1 is implemented, as defined by the
value of the CFG.ERR field. See also CFG, Configuration register on page C2-209.

Attributes A 32-bit MEM-AP register.

Field Descriptions

The TRR bit assignments are:

Bits[31:1]

RES0.

ERR, bit[0]

The function of the TRR depends on whether it is read or written.

On reads, the TRR returns whether an error was logged:

0b0 No error response was logged.

0b1 An error response was logged.

On writes, the TRR controls whether the error response is cleared:

0b0 No effect.

0b1 This field is cleared to 0b0.

The reset value of this field is 0b0.

Accessing TRR

TRR can be accessed from the MEM-AP register space:

Default

RW

Offset

0xD24

RES0

31 1 0

ERR
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C2-241
ID072524 Non-Confidential

C2 The Memory Access Port
C2.6 MEM-AP register descriptions
C2-242 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Chapter C3
The JTAG Access Port

This chapter describes the implementation of the JTAG Access Port (JTAG-AP), and how a JTAG-AP provides a
Debug Port connection to one or more JTAG components. The JTAG-AP is an optional component of an ADI
implementation.

This chapter contains the following sections:

• About the JTAG-AP on page C3-244.

• Operation of the JTAG-AP on page C3-249.

• The JTAG Engine Byte Command Protocol on page C3-252.

• JTAG-AP programmers’ model on page C3-259.

• JTAG-AP register descriptions on page C3-261.

Note

Chapter C1 About the AP gives additional information about APs.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-243
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.1 About the JTAG-AP
C3.1 About the JTAG-AP

The JTAG-AP is an optional component. It enables up to eight legacy IEEE 1149.1 JTAG scan chains to be
connected to the ADI. Each scan chain can contain any number of TAPs, however Arm recommends that only one
TAP is connected to each scan chain.

An external debugger accesses a JTAG component, which is connected to a JTAG-AP, through a JTAG scan chain.
The debugger accesses this scan chain using APACC accesses to registers in the JTAG-AP. A debugger also has to
access JTAG-AP registers to control the JTAG-AP, or to obtain status or identification information from the
JTAG-AP.

C3.1.1 Selecting and accessing the JTAG-AP

Figure C3-1 shows the implementation of a JTAG-AP, and how the JTAG-AP connects the DP to up to eight JTAG
devices. APACC accesses to the DP are passed to the JTAG-AP.

The method of selecting an AP, and selecting a specific register within the selected AP, is the same for MEM-APs
and JTAG-APs, and is summarized in Selecting and accessing an AP on page C1-151.

Figure C3-1 JTAG-AP connecting the DP to JTAG devices

DPACC

Note: Register field widths are not to scale.
 For example, RnW is a single bit.

APACC
RnWA[3:2]Data[31:0]

RnWA[3:2]

Generic
Debug Port

(DP)

JTAG Engine
and FIFOs

JT
AG

de
vi

ce
 1

D
eb

ug
 P

or
t

AP
 a

cc
es

s
JT

AG
 A

cc
es

s
Po

rt
U

p
to

 8

JT
AG

de

vi
ce

s

RnWA[3:2]Data[31:0]

Ba
nk

ed
 J

TA
G

-A
P

re
gi

st
er

s

R
es

er
ve

d

Ba
nk

 0
x
F

R
es

er
ve

d

R
es

er
ve

d

Id
en

tif
ic

at
io

n
R

eg
is

te
r (

ID
R

)

By
te

 F
IF

O
s

1
(B

xF
IF

O
1)

b

Ba
nk

 0
x
1

By
te

 F
IF

O
s

2
(B

xF
IF

O
2)

b

By
te

 F
IF

O
s

3
(B

xF
IF

O
3)

b

By
te

 F
IF

O
s

4
(B

xF
IF

O
4)

b

C
on

tro
l/S

ta
tu

s
W

or
d

(C
SW

)

Ba
nk

 0
x
0

Po
rt

Se
le

ct
 (P

SE
L)

Po
rt

St
at

us
 (P

ST
A)

R
es

er
ve

d

JTAG Access Port
(JTAG-AP)

a This is only a partial
view of the DP
registers. For more
information, see
chapter DP
Reference
Information.

JT
AG

de
vi

ce
 2

JT
AG

de
vi

ce
 7

JT
AG

de
vi

ce
 0

Sc
an

ch
ai

n
co

nn
ec

tio
ns

b On read operations, the
Byte Response FIFO
Registers, BRFIFO1 to
BRFIFO4, are accessed.
On write operations, the
Byte Command FIFO
Registers, BWFIFO1 to
BWFIFO4, are accessed.

AP Access

Access
Port
(AP)

Scan chain
access

JTAG
devices

D
P

R
eg

is
te

rs
a

C
on

tro
l/S

ta
tu

s
(C

TR
L/

ST
AT

)

D
AT

A
LI

N
K

D
EF

IN
ED

AP
 A

dd
re

ss
 (S

EL
EC

T1
)

R
ea

d
Bu

ffe
r (

R
D

BU
FF

)

A[3:2] selects register within bank

Data Link Interface

DP Access

AP
AC

C

Ac
ce

ss
 R

es
ul

t a
nd

 S
ta

tu
s

D
PA

C
C

Debug
Port
(DP)

AP
 A

dd
re

ss
 (S

EL
EC

T)

ADDR[63:4] Data[31:0] RnW selects read or write access

JTAG
Port Mux
C3-244 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.1 About the JTAG-AP
JTAG-APs that implement AP architecture version APv1 or earlier cannot be accessed by on-chip software or via
functional IO. APv2 incorporates functionality that makes the JTAG control functionality accessible to all debug
agents, including on-chip software and debuggers that are connected via functional IO.

In the same way as the APv1 MEM-AP functionality is mapped into the 4KB space of an APv2 MEM-AP, the APv1
JTAG-AP functionality is mapped into the 4KB space of the APv2 JTAG-AP. The full programmers model of the
APv2 JTAG-AP that can be used to access the JTAG-APs is described in JTAG-AP programmers’ model on
page C3-259 and JTAG-AP register descriptions on page C3-261.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-245
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.1 About the JTAG-AP
C3.1.2 Logical structure of the JTAG-AP

A JTAG-AP comprises:

— It interprets a sequence of command bytes from the Command FIFO.

— It drives standard JTAG signals to the JTAG Port Multiplexer.

— It receives the TDO signal from the Port Multiplexer.

— It generates a response and passes it to the Response FIFO.

• The JTAG Port Multiplexer, which multiplexes up to eight JTAG ports to the JTAG Engine. In addition to
forwarding the standard JTAG signals to and from each port, it provides control and status signals for each
port.

• Byte Command and Response FIFOs, which enable efficient use of the JTAG Engine.

• The JTAG-AP registers, which can be divided into three groups:

— An IR

— Control and status registers

— FIFO access registers

Figure C3-2 shows the JTAG-AP structure.

Figure C3-2 Structure of the JTAG Access Port (JTAG-AP)

JTAG
Port Mux

JTAG
Engine

TC
K

TM
S

TD
I

TD
O

Po
rt

0
Po

rt
1

Po
rt

2
Po

rt
3

Po
rt

4
Po

rt
5

Po
rt

6
Po

rt
7

JTAG ports
(number of implemented ports is
IMPLEMENTATION DEFINED)

CSW

Command FIFO
(4 bytes)

Response FIFO
(7 bytes)

JTAG Access Port

AP register interface

Data flow path

Control
signals

n=1

n=2

n=3

31 24 23 16 15 8 7 0

BWFIFOnBRFIFOn
n=4

Status
signals

31 0

PSEL

APACC accesses

PSTA
31 0

Res

Res

31 24 23 16 15 8 7 0

n=1

n=2

n=3

n=4

JTAG signal bundles

Res Res

Res

Res Res

Res

Res

Res Res

Res

IDR
31 0
C3-246 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.1 About the JTAG-AP
Note

The following applies to the FIFOs:

• The Response FIFO must be 7 bytes deep.

• The Command FIFO must be at least 4 bytes deep. Although the Command FIFO can be up to 7 bytes deep,
there is unlikely to be any advantage in having a Command FIFO that is larger than 4 bytes.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-247
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.1 About the JTAG-AP
C3.1.3 JTAG port signals

The signal bundle between the JTAG Port Multiplexer and each implemented JTAG port includes:

• The standard IEEE 1149.1 JTAG signals.

• Port control and status signals.

Table C3-1 gives the full signal list, which applies to each implemented port.

Table C3-1 JTAG Access Port JTAG port signals

Signal Directiona Description Notes

TCK Out Test Clock JTAG IEEE 1149.1 standard signals.

TMS Out Test Mode Select

TDI Out Test Data In

TDO In Test Data Out

TRST* Out Test Reset Active-LOW JTAG IEEE 1149.1 standard signal.

nSRSTOUT Out Subsystem Reset Active-LOW.

SRSTCONNECTED In Subsystem Reset
Connected

Tie-off configuration signals to the JTAG Port
Multiplexer.

PORTCONNECTED In Port Connected

PORTENABLED In Port Enabled Can be deasserted by the JTAG subsystem, for
example when the connected TAP powers down.

a. Signal directions are given relative to the JTAG Port Multiplexer in the JTAG-AP.
C3-248 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.2 Operation of the JTAG-AP
C3.2 Operation of the JTAG-AP

The JTAG-AP communicates with the device using standard JTAG signals and scan chains. This operation is
controlled by the JTAG Engine. The Engine includes a serializer that takes TDI data out of the Command FIFO and
returns TDO data to the Response FIFO, see Figure C3-2 on page C3-246.

The external debugger:

1. Encodes JTAG commands and data into the JTAG Engine Byte Command Protocol, which is described in
The JTAG Engine Byte Command Protocol on page C3-252.

2. Writes to the BWFIFO1-BWFIFO4 registers to transfer the encoded JTAG Engine commands and data to the
JTAG Command FIFO.

3. Reads from the BRFIFO1-BRFIFO4 registers to collect JTAG TDO in response to the encoded JTAG Engine
commands.

4. Decodes the actual TDO data from the response data.

The JTAG Engine provides the connection between stages 2 and 3 of this process.

Note

The JTAG-AP can connect to up to eight JTAG devices. The debugger must write to the PSEL register to select
which JTAG port or ports the JTAG Port Multiplexer connects to the JTAG Engine.

The debugger can start reading data from TDO before completing writing data to TDI, as long as it has completed
writing the command header. A debugger can take advantage of this principle to exchange data that exceeds the size
of the command and response FIFOs.

For example:

1. The debugger writes two bytes to BWFIFO2, to specify:

a. A TDI_TDO scan, with 64 bits of TDI data.

b. The TDO data is to be returned to the debugger.

2. The debugger writes a word to BWFIFO4, containing the first 32 bits of TDI data.

3. The debugger reads a word from BRFIFO4, to obtain the first 32 bits of TDO data.

4. The debugger writes another word to BWFIFO4, with the next 32 bits of TDI data.

5. The debugger reads another word from BRFIFO4, to obtain the next 32 bits of TDO data.

This method provides an efficient encapsulation of the JTAG scan chain.

If the requested data is not available, a read of BRFIFO1-BRFIFO4 stalls, as described in Stalling accesses on
page C3-250. To reduce the number of stalls that are caused by AP accesses to devices with a slow clock, the
debugger can write several bytes of TDI data before attempting to read the first byte of TDO data.

Operation of the JTAG-AP is described in more detail in The JTAG Engine Byte Command Protocol on
page C3-252.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-249
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.2 Operation of the JTAG-AP
C3.2.1 Stalling accesses

 AP accesses to JTAG engine FIFOs can be stalled.

As shown in Figure C3-2 on page C3-246, the JTAG Engine FIFOs comprise the following registers:

• The Byte Response FIFO Registers, BRFIFO1-BRFIFO4.

• The Byte Command FIFO Registers, BWFIFO1-BWFIFO4.

The JTAG Engine FIFOs are described in BRFIFO1-BRFIFO4 and can be used to access the JTAG state machine
and JTAG scan chains as described in The JTAG Engine Byte Command Protocol on page C3-252.

AP accesses to JTAG-AP registers that do not access the JTAG Engine FIFOs cannot be stalled. As shown in
Figure C3-2 on page C3-246, this rule applies to the following registers:

• CSW

• PSEL

• PSTA

• IDR

A JTAG-AP access can stall in the following situations:

Stalling read accesses

The JTAG-AP can stall read accesses to the Byte Response FIFO Registers, BRFIFO1-BRFIFO4.

Depending which of these registers is targeted, a single register read transfers between 1 and 4 bytes
of data from the byte Response FIFO. The register access stalls if the FIFO does not contain enough
data. For example, if the Response FIFO only contains 2 bytes of data and a read access is performed
to BRFIFO4 to transfer 4 bytes of data, the access stalls and remains stalled until there are 4 bytes
of data available in the Response FIFO.

CSW.RFIFOCNT can be read to find the number of bytes of data that are available in the Response
FIFO. A read of the CSW always completes immediately.

Stalling write accesses

The JTAG-AP can stall write accesses to the Byte Command FIFO Registers,
BWFIFO1-BWFIFO4.

Depending which of these registers is targeted, a single register write transfers between 1 and 4
bytes of data into the byte Command FIFO. The register access stalls if the FIFO does not contain
enough free space to accept all the write data. For example, if the Command FIFO only has 1 byte
free and a write access to BWFIFO3 is performed to transfer 3 bytes into the Command FIFO, the
access stalls and remains stalled until the Command FIFO is able to accept the 3 bytes of data.

CSW.WFIFOCNT can be read to find the number of command bytes in the Command FIFO that
are waiting to be processed by the JTAG Engine, which can be used to calculate the number of free
bytes in the FIFO. A read of the CSW always completes immediately.

C3.2.2 Resetting connected JTAG devices or subsystems

Resets of JTAG devices or subsystems that are connected to the JTAG-AP can be triggered with the following
signals:

• The TRST* signal for JTAG Test Resets.

• The nSRSTOUT signal for subsystem resets.

These signals are controlled by the CSW.TRST_OUT and CSW.SRST_OUT fields. A JTAG test reset might have
to be clocked out for several TCK cycles with TMS HIGH to generate the reset. For more information see CSW,
Control/Status Word Register on page C3-271.
C3-250 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.2 Operation of the JTAG-AP
C3.2.3 Handling of an ABORT instruction

If a JTAG-AP that supports the ABORT mechanism receives an ABORT instruction while an input transaction that
uses the JTAG-AP is in progress:

• The JTAG-AP must respond to the input transaction in finite time.

• If error responses are supported by the JTAG-AP, Arm recommends that an error response is reported when
completing the input transaction.

Except for accesses to the BRFIFO1-BRFIFO4 and BWFIFO1-BWFIFO4 registers, Arm recommends that accesses
to JTAG-AP registers always complete in a short finite time, because completion does not depend on other system
resources.

After an abort, the JTAG-AP is in an UNKNOWN state and it is IMPLEMENTATION DEFINED which JTAG-AP registers
are accessible.

Arm recommends that the registers in a JTAG-AP that are not directly related to an outstanding JTAG transaction
remain accessible after an abort, to allow a debug agent to diagnose the cause of the problem that caused the abort.

If a JTAG-AP that supports the ABORT mechanism receives an ABORT instruction when no input transaction that
uses the JTAG-AP is in progress, the JTAG-AP must ignore the ABORT instruction.

C3.2.4 Pushed transaction and transaction counter support

A JTAG-AP supports pushed transactions and sequences of transactions to the following registers only:

• PSTA

• BRFIFO1-BRFIFO4

For more information, see:

• Pushed-compare and pushed-verify operations on page B1-46.

• The transaction counter on page B1-45.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-251
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.3 The JTAG Engine Byte Command Protocol
C3.3 The JTAG Engine Byte Command Protocol

All JTAG commands, including TMS and TDI data, are written to the JTAG-AP Command FIFO through the
interface that is provided by the BWFIFO1-BWFIFO4. To provide high command packing, the JTAG commands
are encoded as a byte protocol, and depending on which of the Byte Write FIFO registers is written to, up to four
bytes can be written to the FIFO in a single operation. See BWFIFO1-BWFIFO4, Byte FIFO registers for write
access on page C3-265.

Data from the TDO signal from the JTAG Port Multiplexer is transferred to the JTAG-AP Response FIFO. The
BWFIFO1-BWFIFO4 registers provide an interface to the Response FIFO. See BRFIFO1-BRFIFO4, Byte FIFO
registers for read access on page C3-263.

In the JTAG Engine Byte Command Protocol, all commands are 1 byte (8-bits). Table C3-2 summarizes the
commands, and the following sections describe them in more detail. Where appropriate, the command descriptions
also describe the TDO data that is produced by the command, and how it is encoded in the Byte Read FIFOs.

C3.3.1 The encoding of the TMS packet

The TMS packet is 1 byte. The payload of the packet holds:

• Between 1 and 5 data bits to be sent on TMS.

• An indication of whether TDI is held at 0 or at 1 while these bits are sent.

While a TMS packet is being executed, no response is captured from TDO. The normal use of TMS packets is to
move around the JTAG state machine. See The Debug TAP State Machine (DBGTAPSM) on page B3-94.

Table C3-3 shows the possible encodings of a TMS packet.

When the JTAG Engine decodes a TMS packet, TDI is held at the value indicated by bit [6] while all the TMS data
bits are sent. If you have to send TMS bits with different TDI values, you must use multiple TMS packets.

The TMS data bits are sent LSB first, so in each row of Table C3-3, TMS[0] is the first bit to be sent.

Table C3-2 Summary of JTAG Engine Byte Command Protocol

Bits of the Command byte
Opcode For description, see:

[7] [6] [5] [4] [3] [2] [1] [0]

0 Opcode payload TMS The encoding of the TMS packet.

1 0 0 Opcode payload TDI_TDO The encoding of the TDI_TDO packet on page C3-253.

1 0 1 X X X X X Reserved -

1 1 0 X X X X X Reserved -

1 1 1 X X X X X Reserved -

Table C3-3 TMS packet encodings

Command byte
Notes

[7] [6] [5] [4] [3] [2] [1] [0]

0 TDI 1 TMS[4] TMS[3] TMS[2] TMS[1] TMS[0] 5 bits of TMS data.

0 TDI 0 1 TMS[3] TMS[2] TMS[1] TMS[0] 4 bits of TMS data.

0 TDI 0 0 1 TMS[2] TMS[1] TMS[0] 3 bits of TMS data.

0 TDI 0 0 0 1 TMS[1] TMS[0] 2 bits of TMS data.

0 TDI 0 0 0 0 1 TMS[0] 1 bit of TMS data.
C3-252 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.3 The JTAG Engine Byte Command Protocol
For example, the TMS packet that is used to send the TMS bit sequence 1-1-0-1, while keeping TDI at 1, is shown
in Figure C3-3. As the diagram shows, this sequence of TMS signals takes four TCK cycles.

Figure C3-3 TMS packet example with TDI held at 1

To send TMS bit sequence 1-0, while keeping TDI at 0, the TMS packet is as shown in Figure C3-4. As shown in
the diagram, this sequence of TMS signals takes two TCK cycles.

Figure C3-4 TMS packet example with TDI held at 0

C3.3.2 The encoding of the TDI_TDO packet

A TDI_TDO packet is a multi-byte packet that is at least 2 bytes long. It comprises:

• The TDI_TDO opcode byte.

• A second byte, that contains:

— For short packets, of fewer than 7 TDI bits, the packed TDI bits.

— Otherwise, the length of the packet.

• If required, between 1 and 16 extra bytes containing the TDI bits.

The following subsections describe these bytes.

The TDI_TDO opcode byte, the first byte of the packet

This byte is the packet header. It indicates the start of a TDI_TDO packet, and contains information about the
command subtype. Figure C3-5 shows the format of this byte.

Figure C3-5 TDI_TDO first byte (opcode) format

0 1 0 1 1 0 1 1

7 6 5 4 3 2 1 0

TMS
packet

TMS[1]TMS[3] TMS[2] TMS[0]

TCK

TDI

TMS TMS[0] TMS[1] TMS[2] TMS[3]

JTAG
signals

TDI

0 0 0 0 0 1 0 1

7 6 5 4 3 2 1 0

TMS
packet

TMS[1] TMS[0]

TCK

TDI

TMS

JTAG
signals

TDI

TMS[0] TMS[1]

[7] [5] [4] [3] [2] [1] [0]

1 0 0 SBZ TMS RTDO TDI UTDI

[6]

TDI_TDO opcode
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-253
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.3 The JTAG Engine Byte Command Protocol
Bits [3:0] are control bits that define the TDI_TDO subtype. Table C3-4 describes all the bits of the TDI_TDO
packet first byte.

Table C3-4 TDI_TDO first byte (opcode) format

Bit Name Valuea

a. Given for bits that have a fixed value for the TDI_TDO first byte.

Description

[7] TDI_TDO 0b1 The value of these bits indicates whether this byte is the first byte of a
TDI_TDO packet

[6] 0b0

[5] 0b0

[4] - SBZ Reserved, Should Be Zero.

[3] TMS - TMS value to use on the last cycle of the scan:

0b0 = TMS LOW on last cycle

0b1 = TMS HIGH on last cycle.

For all earlier cycles of the scan:

• If the previous TMS or TDI_TDO packet finished with TMS high
for the last cycle, it is UNPREDICTABLE whether TMS is HIGH or
LOW for this scan.

• In all other cases, TMS is LOW.

[2] RTDO - Read TDO. This bit determines whether TDO values returned during the
scan are captured and placed in the Response FIFO:

0b0 = Do not capture TDO

0b1 = Capture TDO.

Caution
Do not set this bit to 0b1 if more than one JTAG port is selected and
enabled. If you do, the TDO values captured are UNKNOWN.

[1] TDI - TDI value to use throughout the scan if the UTDI bit is 0b1:

0b0 = hold TDI signal LOW throughout the scan

0b1 = hold TDI signal HIGH throughout the scan

The value of the TDI bit is ignored if the UTDI is 0b0.

[0] UTDI - Use TDI bit. This bit determines whether the TDI bits to be used during
the scan are supplied in the other bytes of the TDI_TDO packet, or
whether the TDI bit, bit [1], specifies the TDI signal to use throughout the
scan:

0b0 = TDI bits for the scan are supplied in the other bytes of the TDI_TDO
packet.

0b1 = The TDI bit, bit [1], determines the TDI signal to use throughout the
scan.

If this bit is 0b1, no TDI data is included in the TDI_TDO packetb.

b. When the Packed format is used for the second byte of the packet, certain bits of that byte are designated as TDI
data bits. If UTDI = 0b1, however, the value of these bits is ignored, as described in The TDI_TDO length byte, the
second byte of the packet on page C3-255. There is no advantage in using the packed format when UTDI = 0b1, but
it is possible to do so.
C3-254 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.3 The JTAG Engine Byte Command Protocol
The TDI_TDO length byte, the second byte of the packet

There are two alternative formats for the second byte of the TDI_TDO packet:

Normal If bit [7] of the TDI_TDO length byte is zero, the byte is in the normal length byte format, and
specifies the length of the scan, which can be any value between 1 and 128 bits. Bits [6:0] of the
byte give the length in bits of the required scan, minus one, as shown in Figure C3-6.

Figure C3-6 TDI_TDO second byte (length byte), normal format

When the TDI_TDO length byte is in the normal format:

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b0, the TDI data for the scan is
packed into extra bytes of the packet, that follow the length byte. See The data bytes, the
remaining byte or bytes of the packet on page C3-256 for more information.

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b1, no TDI data is required for
the scan, and the length byte is the last byte of the packet. If the UTDI bit is 0b1, the
TDI_TDO packet is always 2 bytes long.

See The TDI_TDO opcode byte, the first byte of the packet on page C3-253 for more information
about the UTDI bit.

Packed If bit [7] of the second byte of the TDI_TDO packet is one, the byte is in the packed length byte
format, and contains between 1 and 6 bits of TDI data:

• The length of the required scan is implied by the data in bits [6:0].

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b0, the TDI data for the scan is
packed into the least significant bits of the length byte.

• The second byte is the last byte of the TDI_TDO packet, meaning the packet is 2 bytes long.

Note

The packed format of the TDI_TDO length byte can only be used if the required scan contains 6 bits
or less.

Figure C3-7 shows the permitted contents of the length byte when the packed format is used.

Figure C3-7 TDI_TDO second byte (length byte), packed format

The packed format for the TDI_TDO length byte is summarized in Table C3-5 on page C3-256.

[7] [5] [4] [3] [2] [1] [0]

0 (Length of scan) - 1
(Possible scan length of 1 to 128 bits)

[6]

Indicates Normal format

0 100001 TDI[0]

0 10001 TDI[1] TDI[0]

0 1001 TDI[1]TDI[2] TDI[0]

0 101 TDI[1]TDI[2]TDI[3] TDI[0]

01 1 TDI[1]TDI[2]TDI[3]TDI[4] TDI[0]

1 TDI[1]TDI[2]TDI[3]TDI[4]TDI[5]

[7] [5] [4] [3] [2] [1] [0]

1 TDI[0]

[6]

Indicates Packed format

Scan length = 6 bits

Scan length = 5 bits

Scan length = 4 bits

Scan length = 3 bits

Scan length = 2 bits

Scan length = 1 bit
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-255
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.3 The JTAG Engine Byte Command Protocol
When the TDI_TDO length byte is in the packed format:

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b0, the data that is packed into
bits[5:0] of the length byte determines the value of the TDI signal during the scan. Bit[0] of
the length byte always holds TDI[0], meaning that this bit determines the TDI signal value
for the first TCK cycle of the scan.

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b1, the data that is packed into
bits[5:0] of the length byte only indicates the length of the required scan, and does not affect
the value of the TDI signal during the scan. For example, if the complete length byte is
0b10001XXX, referring to Figure C3-7 on page C3-255 shows that a scan of 3 bits is required.
The TDI signal value, for all three bits, is the TDI value from the first byte of the packet, see
Table C3-3 on page C3-252.

See also The TDI_TDO opcode byte, the first byte of the packet on page C3-253.

Note

The packed format can be used when the UTDI bit in the first byte of the packet is 0b1. However,
there is no advantage in using the packed format when UTDI = 0b1, because the normal format is
easier to use, and the TDI_TDO packet is two bytes long, whichever format is used.

The data bytes, the remaining byte or bytes of the packet

If the TDI_TDO opcode byte is 0x00, and the length byte is in the normal format, the TDI_TDO packet is more than
2 bytes long. In this case:

• Bits[6:0] of the length byte contain the required scan length minus one, in bits.

• The TDI data for the scan is packed into extra bytes of the packet.

The packing of TDI data uses as few bytes as possible, and the least significant bit of TDI data, TDI[0], is always
bit[0] of the first data byte. TDI[0] is the TDI signal value for the first TCK cycle of the scan.

The number of data bytes required is the length of the scan divided by eight, rounded up to an integer value. In the
last data byte, any bits that are not required for TDI data must be 0b0. For example, a scan of 21 cycles requires three
data bytes, giving a total TDI_TDO packet size of five bytes. Figure C3-8 on page C3-257 shows the formatting of
the complete TDI_TDO packet for this example.

Table C3-5 TDI_TDO length byte, packed format

Scan length (bits) Must be zero bits Data start flag TDI data for scana

a. When the UTDI bit of the first byte of the TDI_TDO packet is 0b1, the values of these bits are
ignored.

6 None Bit [6] = 0b1 Bits [5:0]

5 Bit [6] = 0b0 Bit [5] = 0b1 Bits [4:0]

4 Bits [6:5] = 0b00 Bit [4] = 0b1 Bits [3:0]

3 Bits [6:4] = 0b000 Bit [3] = 0b1 Bits [2:0]

2 Bits [6:3] = 0b0000 Bit [2] = 0b1 Bits [1:0]

1 Bits [6:2] = 0b00000 Bit [1] = 0b1 Bit [0]
C3-256 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.3 The JTAG Engine Byte Command Protocol
Figure C3-8 TDI_TDO formatting example. Complete packet for a scan of 21 TCK cycles

The bit assignments for the bytes shown in Figure C3-8 are:

Byte 1, the opcode byte

Bits[7:5] The TDI_TDO opcode, 0b100.

Bit[3] The TMS bit. A value of 0b1 indicates that TMS must be HIGH for the last cycle of the
scan.

Bit[2] The RTDO bit. A value of 0b1 indicates that TDO data must be captured during the scan.

Byte 2, the length byte

Bit[7] A value of 0b0 indicates that this length byte is in normal format.

Bits[6:0] The value of ((length of scan) - 1). This field has the value 0b0010100, which is 20,
meaning the scan length is 21 bits.

Bytes 3 and 4, the first and second data bytes

These bytes contain TDI[15:0], the TDI data for the first 16 cycles of the scan.

Byte 5, the third data byte

This byte contains TDI[20:16], the TDI data for the final five cycles of the scan. Any bits that are
not required for TDI data must be 0b0, so bits[7:5] = 0b000.

C3.3.3 Response bytes from a TDI_TDO packet

If the Read TDO (RTDO) bit, which is bit[2] of a TDI_TDO packet header, is 0b1, the value of the TDO signal is
captured for each TCK cycle of the scan. This captured TDO data is packed into bytes, and each byte is inserted
into the Response FIFO when it is completed.

Figure C3-8 shows a TDI_TDO packet with RTDO = 0b1.

Note

If more than one JTAG port is selected and enabled, the returned TDO values are UNKNOWN.

The number of bytes of TDO data that is inserted in the Response FIFO is the scan length divided by eight, rounded
up to an integer value. When the scan length is not an exact multiple of eight, the last byte of returned data is padded
with bits having a value of 0b0.

The scan stalls if the Response FIFO is full when a byte of TDO data is ready for insertion.

Figure C3-9 on page C3-258 shows the formatting of the TDO data bytes transferred to the Response FIFO for a
scan of 21 TCK cycles where TDO capture is enabled.

0 TDI[20]00 TDI[17]TDI[18]TDI[19] TDI[16]

TDI[14]TDI[15] TDI[13] TDI[9]TDI[10]TDI[11]TDI[12] TDI[8]

TDI[6] TDI[1]TDI[2]TDI[3]TDI[4]TDI[5]TDI[7] TDI[0]

00 0 0101 0

0 01100

[7] [5] [4] [3] [2] [1] [0]

1 0

[6]

TDI_TDO opcode, with TMS = 1 and RTDO = 1

Length byte, normal format (bit [7] = 0)

First data byte

Second data byte

Third data byte
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-257
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.3 The JTAG Engine Byte Command Protocol
Figure C3-9 TDI_TDO response data formatting example. Scan of 21 TCK cycles

If the RTDO bit is 0b0, no response bytes are placed in the Response FIFO.

For details about the Read TDO (RTDO) bit, see The TDI_TDO opcode byte, the first byte of the packet on
page C3-253.

0 TDO[20]00 TDO[17]TDO[18]TDO[19] TDO[16]

TDO[14]TDO[15] TDO[13] TDO[9]TDO[10]TDO[11]TDO[12] TDO[8]

TDO[6] TDO[1]TDO[2]TDO[3]TDO[4]TDO[5]

[7] [5] [4] [3] [2] [1] [0]

TDO[7] TDO[0]

[6]

First data byte transferred to Response FIFO

Second data byte transferred to Response FIFO

Third data byte transferred to Response FIFO
C3-258 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.4 JTAG-AP programmers’ model
C3.4 JTAG-AP programmers’ model

Table C3-6 shows the memory map of the JTAG-AP registers, and indicates where they are described in detail.

Using the Debug Port to access Access Ports on page A1-28 explains how to access AP registers.

All the registers that are listed in Table C3-6 are required in every JTAG-AP APv2 implementation.

Table C3-6 JTAG-AP APv2 programmers’ model

Offset Type Name Description

Reserved area

0x000-0xCFC - - Reserved, RES0

JTAG control registers

0xD00 RW CSW

0xD04 RW PSEL

0xD08 RW PSTA

0xD0C - - Reserved, RES0

0xD10 RO

Read access:
BRFIFO1-BRFIFO4

Write access:
BWFIFO1-BWFIFO4

Read, single entry

WO Write, single entry

0xD14 RO Read, two entries

WO Write, two entries

0xD18 RO Read, three entries

WO Write, three entries

0xD1C RO Read, four entries

WO Write, four entries

0xD20 - 0xDF8 RES0 - Reserved

0xDFC RO IDR

Reserved area

0xE00-0xEFC - - Reserved, RES0.

CoreSight management registers

0xF00 RW ITCTRL See ITCTRL, Integration Mode Control Register on
page C3-277.

0xF04-0xF9C - - Reserved, RES0.

0xFA0 RW CLAIMSET See CLAIMSET and CLAIMCLR, Claim Tag Set
Register and Claim Tag Clear Register on
page C3-268.0xFA4 RW CLAIMCLR

0xFA8 RO DEVAFF0 See DEVAFF0-DEVAFF1, Device Affinity Registers
on page C3-273.

0xFAC RO DEVAFF1
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-259
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.4 JTAG-AP programmers’ model
0xFB0 WO LAR See LAR and LSR, Lock Access Register and Lock
Status Register on page C3-278.

0xFB4 RO LSR

0xFB8 RO AUTHSTATUS See AUTHSTATUS, Authentication Status Register
on page C3-261.

0xFBC RO DEVARCH See DEVARCH, Device Architecture Register on
page C3-274.

0xFC0 RO DEVID2 See DEVID1-DEVID2, Device Configuration
Registers on page C3-275.

0xFC4 RO DEVID1

0xFC8 RO DEVID See DEVID, Device Configuration Register on
page C3-275.

0xFCC RO DEVTYPE See DEVTYPE, Device Type Register on
page C3-276.

0xFD0-0xFDC RO PIDR4-PIDR7 See PIDR0-PIDR7, Peripheral Identification
Register on page C3-279.

0xFE0-0xFEC RO PIDR0-PIDR3

0xFF0-0xFFC RO CIDR0-CIDR3 See CIDR0-CIDR3, Component Identification
Registers on page C3-267.

Table C3-6 JTAG-AP APv2 programmers’ model (continued)

Offset Type Name Description
C3-260 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
C3.5 JTAG-AP register descriptions

This section gives full descriptions of the JTAG-AP registers.

The registers are listed alphabetically by name.

C3.5.1 AUTHSTATUS, Authentication Status Register

The AUTHSTATUS characteristics are:

Purpose

Reports the required security level and status of the authentication interface. Where functionality
changes on a given security level, the change in status must be reported in this register.

The effect of each debug level being enabled or disabled is specific to each AP.

Usage constraints

None.

AUTHSTATUS is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The AUTHSTATUS bit assignments are:

Bits[31:28]

RES0.

RTNID, bits[27:26]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

RTID, bits[25:24]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

SUNID, bits[23:22]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

SUID, bits[21:20]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

Default

RO

RES0 RTNID RTID SUNID SUID

NSUNID

NSUID RLNID RLID

01

NSID

2567

SID

89

SNID

NSNID

1011

HID

1231 141516171825262728 2423 22 13192021

HNID

34
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-261
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
For a JTAG-AP, this field always takes the value 0b00.

NSUNID, bits[19:18]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

NSUID, bits[17:16]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

RLNID, bits[15:14]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

RLID, bits[13:12]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

HNID, bits[11:10]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00

HID, bits[9:8]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

SNID, bits[7:6]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

SID, bits[5:4]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

NSNID, bits[3:2]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

NSID, bits[1:0]

See register descriptions in AUTHSTATUS, Authentication Status Register on page C1-153.

For a JTAG-AP, this field always takes the value 0b00.

Accessing AUTHSTATUS

AUTHSTATUS can be accessed at the following address:

Offset

0xFB8
C3-262 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
C3.5.2 BRFIFO1-BRFIFO4, Byte FIFO registers for read access

The BRFIFO1-BRFIFO4 characteristics are:

Purpose

Enable 1, 2, 3, or 4 bytes to be read in parallel from the Response FIFO.

The JTAG Engine Byte Command protocol that is used for the commands and responses is
described in The JTAG Engine Byte Command Protocol on page C3-252.

Usage constraints

The BRFIFO1-BRFIFO4 registers are mapped to the same JTAG-AP register addresses as
the BWFIFO1-BWFIFO4 registers. The AP accesses the BRFIFOn registers on read
operations, and the BWFIFOn registers on write operations.

An AP transaction that reads more responses than are available in the Response FIFO stalls
until enough data is available to match the request. To check the number of response bytes
that are available, read the CSW.RFIFOCNT field before initiating an AP transaction to
read from the Response FIFO.

BRFIFO1-BRFIFO4 are accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of four 32-bit RO registers.

Register BRFIFO1 BRFIFO2 BRFIFO3 BRFIFO4

Address 0xD10 0xD14 0xD18 0xD1C

Number of bytes read
from Response FIFO

1 2 3 4

Default

RO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-263
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Field Descriptions

The BRFIFO1-BRFIFO4 bit assignments are:

BRFIFO1 bits[31:8]

RES0.

Byte 1, BRFIFO1 bits[7:0]

The first byte to be read from the Response FIFO.

BRFIFO2 bits[31:16]

RAZ.

Byte 2, BRFIFO2 bits[15:8]

The second byte to be read from the Response FIFO.

Byte 1, BRFIFO2 bits[7:0]

The first byte to be read from the Response FIFO.

BRFIFO3 bits[31:24]

RAZ.

Byte 3, BRFIFO3 bits[23:16]

The third byte to be read from the Response FIFO.

Byte 2, BRFIFO3 bits[15:8]

The second byte to be read from the Response FIFO.

Byte 1, BRFIFO3 bits[7:0]

The first byte to be read from the Response FIFO.

Byte 4, BRFIFO4 bits[31:24]

The fourth byte to be read from the Response FIFO.

Byte 3, BRFIFO4 bits[23:16]

The third byte to be read from the Response FIFO.

Byte 2, BRFIFO4 bits[15:8]

The second byte to be read from the Response FIFO.

Byte 1, BRFIFO4 bits[7:0]

The first byte to be read from the Response FIFO.

31 0

RES0

24

RES0 RES0 Byte 1

23 16 15 8 7

0xD10BRFIFO1

31 0

RES0

24

RES0 Byte 2 Byte 1

23 16 15 8 7

0xD14BRFIFO2

31 0

RES0

24

Byte 3 Byte 2 Byte 1

23 16 15 8 7

0xD18BRFIFO3

31 0

Byte 4

24

Byte 3 Byte 2 Byte 1

23 16 15 8 7

0xD1CBRFIFO4
C3-264 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Accessing BRFIFO1-BRFIFO4

BRFIFO1-BRFIFO4 can be accessed from the JTAG-AP register space:

C3.5.3 BWFIFO1-BWFIFO4, Byte FIFO registers for write access

The BWFIFO1-BWFIFO4 characteristics are:

Purpose

Enable 1, 2, 3, or 4 bytes to be written in parallel to the Command FIFO.

The JTAG Engine Byte Command protocol that is used for the commands and responses is
described in The JTAG Engine Byte Command Protocol on page C3-252.

Usage constraints

The BWFIFO1-BWFIFO4 registers are mapped to the same JTAG-AP register addresses as
the BRFIFO1-BRFIFO4 registers. The AP accesses the BRFIFOn registers on read
operations, and the BWFIFOn registers on write operations.

An AP transaction that writes more commands than there is space for in the Command FIFO
stalls until there is enough space in the Command FIFO. Space in the Command FIFO is
freed as commands are executed by the JTAG Engine. To check the number of commands
already present in the Command FIFO, read the CSW.WFIFOCNT field before initiating an
AP transaction to write to the Command FIFO. The number of additional commands you
can write to the FIFO can be calculated by subtracting the return value from the size of the
Command FIFO.

BWFIFO1-BWFIFO4 are accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of four 32-bit WO registers.

Access
Offset

BRFIFO1 BRFIFO2 BRFIFO3 BRFIFO4

Read 0xD10 0xD14 0xD18 0xD1C

Number of bytes read 1 2 3 4

Register BWFIFO1 BWFIFO2 BWFIFO3 BWFIFO4

Address 0xD10 0xD14 0xD18 0xD1C

Number of bytes written
to Command FIFO

1 2 3 4

Default

WO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-265
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Field Descriptions

The BWFIFO1-BWFIFO4 bit assignments are:

BWFIFO1 bits[31:8]

RES0.

Byte 1, BWFIFO1 bits[7:0]

The first byte to be written to the Command FIFO.

BWFIFO2 bits[31:16]

RES0.

Byte 2, BWFIFO2 bits[15:8]

The second byte to be written to the Command FIFO.

Byte 1, BWFIFO2 bits[7:0]

The first byte to be written to the Command FIFO.

BWFIFO3 bits[31:24]

RES0.

Byte 3, BWFIFO3 bits[23:16]

The third byte to be written to the Command FIFO.

Byte 2, BWFIFO3 bits[15:8]

The second byte to be written to the Command FIFO.

Byte 1, BWFIFO3 bits[7:0]

The first byte to be written to the Command FIFO.

Byte 4, BWFIFO4 bits[31:24]

The fourth byte to be written to the Command FIFO.

Byte 3, BWFIFO4 bits[23:16]

The third byte to be written to the Command FIFO.

Byte 2, BWFIFO4 bits[15:8]

The second byte to be written to the Command FIFO.

Byte 1, BWFIFO4 bits[7:0]

The first byte to be written to the Command FIFO.

31 0

RES0

24

RES0 RES0 Byte 1

23 16 15 8 7

0xD10BRFIFO1

31 0

RES0

24

RES0 Byte 2 Byte 1

23 16 15 8 7

0xD14BRFIFO2

31 0

RES0

24

Byte 3 Byte 2 Byte 1

23 16 15 8 7

0xD18BRFIFO3

31 0

Byte 4

24

Byte 3 Byte 2 Byte 1

23 16 15 8 7

0xD1CBRFIFO4
C3-266 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Accessing BWFIFO1-BWFIFO4

BWFIFO1-BWFIFO4 can be accessed from the JTAG-AP register space:

C3.5.4 CIDR0-CIDR3, Component Identification Registers

This section describes the bit assignments for JTAG AP components.

The CIDR0-CIDR3 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

CIDR0-CIDR3 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Four 32-bit management registers.

Field Descriptions

The CIDR0-CIDR3 bit assignments are:

Access
Offset

BWFIFO1 BWFIFO2 BWFIFO3 BWFIFO4

Write 0xD10 0xD14 0xD18 0xD1C

Number of bytes written 1 2 3 4

Default

RO

31 0

RES0 0xB1

8 7

PRMBL_3

CIDR3 0xFFC

31 0

RES0 0x05

8 7

PRMBL_2

CIDR2 0xFF8

31 0

RES0 0x0

8 7

0x9

4 3

CLASS PRMBL_1

CIDR1 0xFF4
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-267
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
CIDR3 bits[31:8]

RES0.

PRMBL_3, CIDR3 bits[7:0]

0xB1.

CIDR2 bits[31:8]

RES0.

PRMBL_2, CIDR2 bits[7:0]

0x05.

CIDR1 bits[31:8]

RES0.

CLASS, CIDR1 bits[7:4]

0x9 CoreSight component.

PRMBL_1, CIDR1 bits[3:0]

0x0.

CIDR0 bits[31:8]

RES0.

PRMBL_0, CIDR0 bits[7:0]

0x0D.

Accessing CIDR

CIDR0-CIDR3 can be accessed at the following address:

C3.5.5 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register

The CLAIMSET and CLAIMCLR characteristics are:

Purpose

CLAIMSET and CLAIMCLR are used to communicate between different debug agents and to
claim usage of an APv2 AP. For detailed information, see CLAIMSET and CLAIMCLR, Claim Tag
Set Register and Claim Tag Clear Register on page C1-156.

Usage constraints

Offset

CIDR0 CIDR1 CIDR2 CIDR3

0xFF0 0xFF4 0xFF8 0xFFC

31 0

RES0 0x0D

8 7

PRMBL_0

CIDR0 0xFF0
C3-268 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
CLAIMSET and CLAIMCLR are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers.

Field Descriptions

The CLAIMSET and CLAIMCLR bit assignments are:

CLAIMCLR bits[31:nTags]

RAZ/WI

CLR, CLAIMCLR bits[nTags-1:0]

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of bits
set in CLAIMSET.

Allowed values of CLR[n] are:

Write 0 No effect.

Write 1 Clear the claim tag for bit[n].

Read 0 The claim tag bit is not set.

Read 1 The claim tag bit is set.

CLAIMSET bits[31:nTags]

RAZ/WI

SET, CLAIMSET bits[nTags-1:0]

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of claim
bits that are implemented.

Permitted values of SET[n] are:

Write 0 No effect.

Write 1 Set the claim tag for bit[n].

Read 0 The claim tag that is represented by bit[n] is not implemented.

Read 1 The claim tag that is represented by bit[n] is implemented.

CLAIMSET CLAIMCLR

RW RW

31 0

CLRRAZ/WI

nTags-1nTags

CLAIMCLR 0xFA4

31 0

SETRAZ/WI

nTags-1nTags

CLAIMSET 0xFA0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-269
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Accessing CLAIMSET and CLAIMCLR

CLAIMSET and CLAIMCLR can be accessed at the following addresses:

Offset

CLAIMSET CLAIMCLR

0xFA0 0xFA4
C3-270 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
C3.5.6 CSW, Control/Status Word Register

The CSW characteristics are:

Purpose

CSW configures and controls transfers through the JTAG interface.

Usage constraints

Several fields in the register are read-only, see Field Descriptions.

CSW is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit read/write register.

Field Descriptions

The CSW bit assignments are:

SERACTV, bit[31]

JTAG Engine active.

This read-only field can have one of the following values:

0b0 JTAG Engine is inactive, provided WFIFOCNT is also 0b0.

0b1 JTAG Engine is processing commands from the Command FIFO.

Note

The JTAG Engine is only guaranteed to be inactive if both SERACTV and WFIFOCNT are zero.

The reset value of this field is 0b0.

WFIFOCNT, bits[30:28]

Command FIFO outstanding byte count.

This read-only field returns the number of command bytes held in the Command FIFO that have yet
to be processed by the JTAG Engine. The reset value is 0b000.

Bit[27]

Reserved, RES0.

RFIFOCNT, bits[26:24]

Response FIFO outstanding byte count.

Default

RW

31 30 24 23 4 3 2 0

RES0

PORTCONNECTEDRFIFOCNT

28 27 26 1

RES0
WFIFOCNT
SERACTV

SRSTCONNECTED
TRST_OUT
SRST_OUT
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-271
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
This read-only field returns the number of bytes of response data available in the Response FIFO.

The reset value of this field is 0b000.

Bits[23:4]

Reserved, RES0.

PORTCONNECTED, bit[3]

Selected ports connected.

This read-only field returns the logical AND of the PORTCONNECTED signals from all ports that
are currently selected.

This field is read-only. The reset value depends on the state of the connected signals when the
register is read.

SRSTCONNECTED, bit[2]

Selected ports reset connected.

This read-only field returns the logical AND of the SRSTCONNECTED signals from all ports that
are currently selected.

The reset value depends on the state of the connected signals when the register is read.

TRST_OUT, bit[1]

This field drives the TRST* signal for the currently selected port or ports.

0b0 Deassert TRST* HIGH.

0b1 Assert TRST* LOW.

Note

The TRST* signal is active LOW: when TRST_OUT has the value 0b1, the TRST* output is LOW.

TRST_OUT does not self-reset: it must be cleared to 0b0 by a software write. The reset value is 0b0.

Although TRST_OUT drives the TRST* signal, writing to this field only causes the field value to
change. It might be necessary to clock the devices connected to the selected JTAG ports using TCK,
to enable the devices to recognize the change on TRST*:

1. Write 1 to the CSW.TRST_OUT bit, to specify that TRST* must be asserted LOW.

2. Drive a sequence of at least five TMS = 1 clocks from the JTAG Engine by issuing the
command 0b00111111 to the JTAG Engine. This sequence guarantees that the TAP enters the
Test-Logic/Reset state, even if it has no TRST* connection.

3. Write 0b0 to CSW.TRST_OUT, to make sure that the TRST* signal is HIGH on subsequent
TCK cycles.

If the JTAG connection is not clocked in this way while TRST* is asserted LOW, some or all TAPs
might not reset.

SRST_OUT, bit[0]

This field drives the nSRSTOUT signal for the port or ports that are currently selected, and can have
one of the following values:

0b0 Deassert nSRSTOUT HIGH.

0b1 Assert nSRSTOUT LOW.

Note
The nSRSTOUT signal is active LOW: when SRST_OUT has the value 0b1, the nSRSTOUT
output is LOW.

SRST_OUT does not self-reset: it must be cleared to 0b0 by a software write. The reset value is 0b0.
C3-272 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Accessing CSW

CSW can be accessed from the JTAG-AP register space:

C3.5.7 DEVAFF0-DEVAFF1, Device Affinity Registers

The DEVAFF0-DEVAFF1 characteristics are:

Purpose

Enables a debugger to determine whether two components have an affinity with each other.

Usage constraints

DEVAFF0-DEVAFF1 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers.

Field Descriptions

The DEVAFF0-DEVAFF1 bit assignments are:

DEVAFF0, bits[31:0]
DEVAFF1, bits[31:0]

IMPLEMENTATION DEFINED.

Accessing DEVAFF0-DEVAFF1

DEVAFF0-DEVAFF1 can be accessed at the following addresses:

Offset

0xD00

Default

RO

Offset

DEVAFF0 DEVAFF1

0xFA8 0xFAC

31 0

IMPLEMENTATION DEFINEDDEVAFF1 0xFAC

31 0

IMPLEMENTATION DEFINEDDEVAFF0 0xFA8
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-273
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
C3.5.8 DEVARCH, Device Architecture Register

The DEVARCH characteristics are:

Purpose

Identifies the architect and architecture of a CoreSight component.

Usage constraints

DEVARCH is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVARCH bit assignments are:

ARCHITECT, bits[31:21]

0x23B Arm.

PRESENT, bit[20]

0b1 Present.

REVISION, bits[19:16]

0x0 Revision 0.

ARCHID, bits[15:0]

For an APv2 JTAG-AP, this field has the following value:

0x0A27 JTAG-AP.

Accessing DEVARCH

DEVARCH can be accessed at the following address:

Default

RO

Offset

0xFBC

PRESENT

31 0

0x0A270x23B 1 0x0

21 20 19 16 15

ARCHIDARCHITECT REVISION
C3-274 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
C3.5.9 DEVID, Device Configuration Register

The DEVID characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

DEVID is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVID bit assignments are:

Bits[31:0]

RES0.

Accessing DEVID

DEVID can be accessed at the following address:

C3.5.10 DEVID1-DEVID2, Device Configuration Registers

The DEVID1-DEVID2 characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

DEVID1-DEVID2 are accessible as follows:

Configurations

Included in all implementations.

Default

RO

Offset

0xFC8

31 0

RES0

Default

RO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-275
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Attributes

Two 32-bit registers.

Field Descriptions

The DEVID1-DEVID2 bit assignments are:

DEVID1, bits[31:0]
DEVID2, bits[31:0]

RES0.

Accessing DEVID1-DEVID2

DEVID1-DEVID2 can be accessed at the following addresses:

C3.5.11 DEVTYPE, Device Type Register

The DEVTYPE characteristics are:

Purpose

A debugger can use DEVTYPE to obtain information about a component that has an unrecognized
Part number.

Usage constraints

DEVTYPE is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Offset

DEVID1 DEVID2

0xFC4 0xFC0

31 0

RES0DEVID1 0xFC4

31 0

RES0DEVID2 0xFC0

Default

RO
C3-276 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Field Descriptions

The DEVTYPE bit assignments are:

Bits[31:8]

RES0.

SUB, bits[7:4]

0x0 Other, undefined.

MAJOR, bits[3:0]

0x0 Miscellaneous.

Accessing DEVTYPE

DEVTYPE can be accessed at the following address:

C3.5.12 ITCTRL, Integration Mode Control Register

The ITCTRL characteristics are:

Purpose

A component can use ITCTRL to dynamically switch between functional mode and
integration mode.

In integration mode, topology detection is enabled.

Usage constraints

After switching to integration mode and performing integration tests or topology detection,
reset the system to ensure correct behavior of CoreSight and other connected system
components.

ITCTRL is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Offset

0xFCC

31 0

MAJORRES0

4 3

SUB

8 7

Default

RW
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-277
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Field Descriptions

The ITCTRL bit assignments are:

Bits[31:1]

RES0.

IME, bits[0] Permitted values of IME are:

0 The component must enter functional mode.

1 The component must enter integration mode and enable support for topology
detection and integration testing.

When no integration functionality is implemented, this field is RES0.

Accessing ITCTRL

ITCTRL can be accessed at the following address:

C3.5.13 LAR and LSR, Lock Access Register and Lock Status Register

The LAR and LSR characteristics are:

Purpose

The Software Lock mechanism prevents accidental access to the registers of CoreSight components.

For an AP, the lock mechanism is not implemented.

Usage constraints

LAR and LSR are accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of 32-bit registers.

Offset

0xF00

RES0

31 01

IME

LAR LSR

WO RO
C3-278 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Field Descriptions

The LAR and LSR bit assignments are:

LSR, bits[31:3]

RES0.

nTT, LSR bit[2]

RAZ.

SLK, LSR bit[1]

RAZ.

SLI, LSR bit[0]

RAZ.

KEY, LAR bits[31:0]

WI.

Accessing LAR and LSR

LAR and LSR can be accessed at the following addresses:

C3.5.14 PIDR0-PIDR7, Peripheral Identification Register

This section describes the bit assignments for JTAG AP components. For a full description of the PIDR registers,
see PIDR0-PIDR7, Peripheral Identification Register.PIDR1PIDR2PIDR3PIDR4

The PIDR0-PIDR7 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

PIDR0-PIDR7 are accessible as follows:

Offset

LAR LSR

0xFB0 0xFB4

RES0

31 03 2 1

nTT
SLK
SLI

LSR 0xFB4

31 0

KEYLAR 0xFB0

Default

RO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-279
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Configurations

Included in all implementations.

Attributes

Eight 32-bit management registers.

Field Descriptions

The PIDR0-PIDR7 bit assignments are:

PIDR3 bits[31:8]

RES0.

REVAND, PIDR3 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

CMOD, PIDR3 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR2 bits[31:8]

RES0.

31 0

RES0

8 7

CMODREVAND

4 3

PIDR_3 0xFEC

JEDEC

31 0

RES0

8 7

DES_1REVISION

4 3

1

2

PIDR_2 0xFE8

31 0

RES0 PART_1

8 7

DES_0

4 3

PIDR_1 0xFE4

31 0

RES0 PART_0

8 7

PIDR_0 0xFE0

31 0

RES0PIDR_7 0xFDC

31 0

RES0PIDR_6 0xFD8

31 0

RES0PIDR_5 0xFD4

31 0

RES0

8 7

DES_2SIZE

4 3

PIDR_4 0xFD0
C3-280 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
REVISION, PIDR2 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

JEDEC, PIDR2 bits[3]

0b1 A JEDEC value is used.

DES_1, PIDR2 bits[2:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR1 bits[31:8]

RES0.

DES_0, PIDR1 bits[7:4]

See register descriptions inPIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PART_1, PIDR1 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR0 bits[31:8]

RES0.

PART_0, PIDR0 bits[7:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR7 bits[31:0]

RES0.

PIDR6 bits[31:0]

RES0.

PIDR5 bits[31:0]

RES0.

PIDR4 bits[31:8]

RES0.

SIZE, PIDR4 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

DES_2, PIDR4 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

Accessing PIDR0-PIDR7

PIDR0-PIDR7 can be accessed at the following address:

Offset

PIDR0 PIDR1 PIDR2 PIDR3 PIDR4 PIDR5 PIDR6 PIDR7

0xFE0 0xFE4 0xFE8 0xFEC 0xFD0 0xFD4 0xFD8 0xFDC
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-281
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
C3.5.15 PSEL, Port Select register

The PSEL characteristics are:

Purpose

PSEL selects one or more JTAG ports to be driven by the JTAG Engine.

Usage constraints

PSEL must only be written to when the JTAG Engine is inactive and the WFIFO is empty.
Writing PSEL at any other time has UNPREDICTABLE results, so before writing to PSEL you
must read the JTAG-AP CSW and make sure that the SERACTV and WFIFOCNT fields
are both zero.

The reset value of PSEL is UNKNOWN.

PSEL is accessible as follows:

Configurations

Available in all implementations.

Attributes

A 32-bit read/write register.

Field Descriptions

The PSEL bit assignments are:

Bits[31:8]

Reserved, RES0.

PSEL7-PSEL0, bits[7:0]

Select control for the JTAG ports.

The possible values of each of the PSELn fields are:

0b0 JTAG port n is not selected.

0b1 JTAG port n is selected.

If JTAG port n is not connected to the JTAG-AP, it is IMPLEMENTATION DEFINED whether PSELn is
read/write or RES0.

Note

JTAG port n is enabled only if all the following are true:

• The port is connected to the JTAG-AP.

• PSELn is 0b1.

• The PORTENABLED signal from the port to the JTAG-AP is asserted HIGH.

When more than one JTAG port is selected in the PSEL Register:

• The same values for TDI, TMS, TRST*, and nSRSTOUT are driven to all selected ports.

• The return values from TDO are UNKNOWN.

Default

RW

31 0

RES0

8 7

PSEL7-PSEL0
C3-282 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Using the normal, serially connected model for JTAG, IR updates are always made in parallel, which
enables updating multiple TAPs in parallel. This update mechanism can be useful, for example to
provide synchronized behavior.

Because each JTAG port can contain multiple TAPs connected in series, the process for updating
TAPs in parallel is as follows:

1. Scan each JTAG port in turn, by selecting each port in turn in the PSEL register. When
scanning a port, leave the required TAP in the TAP Exit1 or Exit2 state.

2. When all ports have been scanned in this way, write to PSEL again to select all the required
ports.

3. Scan through the TAP Update state. All the TAPs are updated synchronously.

Accessing PSEL

PSEL can be accessed from the JTAG-AP register space:

Offset

0xD04
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-283
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
C3.5.16 PSTA, Port Status Register

The PSTA characteristics are:

Purpose

PSTA indicates whether a connected and selected JTAG port has been disabled, even if it has been
re-enabled.

Usage constraints

Writing a value with any non-zero bits to PSTA when the JTAG-AP engine is not idle is
UNPREDICTABLE. The JTAG-AP Engine is idle when both CSW.SERACTV and CSW.WFIFOCNT
are zero.

The reset value of PSTA0-PSTA7 is 0b0.

PSTA is accessible as follows:

Configurations

 A JTAG-AP register.

Attributes

A 32-bit read/write register.

Field Descriptions

The PSTA bit assignments are:

Bits[31:8]

RES0.

PSTA7-PSTA0, bits[7:0]

Each field PSTAn represents a sticky status flag for JTAG port n, and behaves as R/W1C.

PSTAn is set to 0b1 if all the following are true:

• JTAG port n is connected to the JTAG-AP.

• PSEL.PSELn is 0b1.

• JTAG port n is disabled.

Once set to 0b1, PSTAn remains set until it is written with the value 0b1.

As long as PSTAn is 0b1, JTAG port n remains disabled.

If JTAG port n is not connected to the JTAG-AP, PSTAn is RAZ.

Default

RW

31 0

RES0

8 7

PSTA7-PSTA0
C3-284 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
Table C3-7 shows the behavior of PSTAn on reads and writes:

Accessing PSTA

PSTA can be accessed from the JTAG-AP register space:

Table C3-7 Read and write behavior of PSTAn

Value Meaning on reads Action on writes

0b0 Port has not been disabled, or port is not
connected.

No action, write is ignored

0b1 Port has been disabled Clear PSTAn to 0b0

Offset

0xD08
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. C3-285
ID072524 Non-Confidential

C3 The JTAG Access Port
C3.5 JTAG-AP register descriptions
C3-286 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Part D
ROM Tables

Chapter D1
About ROM Tables

The chapter describes ROM Tables. It includes the following sections:

• ROM Tables Overview on page D1-290.

• ROM Table Types on page D1-291.

• Component and Peripheral ID Registers for ROM Tables on page D1-292.

• The component address on page D1-293.

• Location of the ROM Table on page D1-294.

• ROM Table hierarchies on page D1-295.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D1-289
ID072524 Non-Confidential

D1 About ROM Tables
D1.1 ROM Tables Overview
D1.1 ROM Tables Overview

ROM Tables hold information about debug components.

• If an implementation of the ADI connects to a single debug component, a ROM Table is not required.
However, a designer might choose to implement such a system to include a ROM Table, as shown in
Figure A1-6 on page A1-33.

• If an implementation of the ADI connects to more than one debug component, the system must include at
least one ROM Table.

A ROM Table connects to a bus controlled by a MEM-AP. In other words, the ROM Table is part of the address
space of the memory system that is connected to a MEM-AP. More than one ROM Table can be connected to a single
bus.

A ROM Table always occupies 4KB of memory.
D1-290 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D1 About ROM Tables
D1.2 ROM Table Types
D1.2 ROM Table Types

The following types of ROM Tables are permitted to be used with ADIv6:

Class 0x1 ROM Tables

In a Class 0x1 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x1, which identifies the component as a Class
0x1 ROM Table.

• The PIDR4.SIZE field must be 0.

• A ROM Table must occupy a single 4KB block of memory.

• A Class 0x1 ROM Table is a read-only device.

For a detailed description of the Class 0x1 ROM Table entries and registers, see Chapter D2 Class
0x1 ROM Tables.

Class 0x9 ROM Tables

In a Class 0x9 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x9, which identifies the component as a
CoreSight Component.

• The DEVTYPE and DEVID registers contain information about the ROM Table, as
described in Chapter D3 Class 0x9 ROM Tables.

• The PIDR4.SIZE field must be 0.

• A ROM Table must occupy a single 4KB block of memory.

• Class 0x9 ROM Table entries are 32 or 64 bits wide.

For a detailed description of the Class 0x9 ROM Table entries and registers, see Chapter D3 Class
0x9 ROM Tables.

Note

Class 0x9 ROM Tables can be used alongside Class 0x1 ROM Tables, and both Class 0x9 and Class 0x1 ROM
Tables might be present in systems with an ADIv6-compliant interface.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D1-291
ID072524 Non-Confidential

D1 About ROM Tables
D1.3 Component and Peripheral ID Registers for ROM Tables
D1.3 Component and Peripheral ID Registers for ROM Tables

Any ROM Table must implement a set of Component and Peripheral ID Registers, that start at offset 0xFD0 in the
ROM Table. Arm® CoreSight™ Architecture Specification describes these registers. This section only describes
particular features of the registers when they relate to a ROM Table.

D1.3.1 Identifying the debug SoC, system, or subsystem

The Unique Component Identifier in a ROM table uniquely identifies the SoC, platform, or subsystem described by
the ROM table. For example:

• A cluster of components grouped together with a ROM table hierarchy pointing to all the components is
uniquely identified by the outermost ROM Table in the cluster.

• A subsystem of all components connected to a single MEM-AP is uniquely identified by the outermost ROM
Table in the subsystem. This ROM Table is usually the first component pointed to by the MEM-AP.

• An SoC, consisting of multiple MEM-APs implementing the ADIv5, is uniquely identified by the collective
Unique Component Identifiers from all of the outermost ROM Tables pointed to by each of the MEM-APs.

• An SoC, consisting of multiple MEM-APs implementing the ADIv6, is uniquely identified by the Unique
Component Identifiers from the outermost ROM Table providing pointers to each of the MEM-APs. This
ROM Table is usually the first component pointed to by the DP.

An SoC, system, or subsystem might be configurable when being built. For example, a cluster of processors might
permit the number of processors to be configurable. The ROM Table, which describes such a collection of
components, might have the same Unique Component Identifier for all configurations of the system. Although, this
is only permitted when components are either included or excluded, and is not permitted to be the same when the
location of any component in the address map changes or components significantly change in function. In effect, a
ROM Table Unique Component Identifier uniquely identifies a superset configuration of the collection of
components. ROM Tables with the same Unique Component Identifier might only describe a subset of this superset.

The DP TARGETID register also uniquely identifies the SoC or platform, and Arm deprecates use of the top-level
ROM Table Peripheral ID registers as a unique identifier by tools.

Note

If SWJ-DP is implemented, it is not required that both the JTAG-DP and SW-DP implement the same DP
architecture version, and therefore TARGETID. Tools might be using a DP that does not implement DPv3.

Deprecation of the use of the top-level ROM Table peripheral ID registers by tools does not remove the requirement
on implementations to provide a unique identifier in the top-level ROM Table peripheral ID registers. Future
releases of this manual might remove this requirement.
D1-292 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D1 About ROM Tables
D1.4 The component address
D1.4 The component address

Each debug component occupies one or more 4KB blocks of address space. This block of address space is referred
to as the Debug Register File for the component. For examples, see Figure A1-3 on page A1-30, and other figures
in Chapter A1.

The Address offset field of a ROM Table entry, ROMENTRY<n>.OFFSET, points to the start of the 4KB block
which contains the Peripheral ID and Component ID registers of component n. The base address of this 4KB block
is calculated using the following equation:

Component_n_Address = ROM_Base_Address + (ROMENTRY<n>.OFFSET << 12)

In systems where the components and ROM tables exist in an address space which is larger than 32 bits, and the
ROM table entry is a 32-bit value, the offset provided in the ROM table entry is sign-extended to the size of the
address space, before being added to the ROM_Base_Address.

The Component and Peripheral ID Registers for component n start at Component_n_Address + 0xFD0.

For a component that occupies more than one 4KB block, the size of the component and the base address of the
component are IMPLEMENTATION DEFINED, and might be determined by a combination of the values in the
Peripheral ID registers and other IMPLEMENTATION DEFINED registers.

Note

For a component which occupies more than 4KB, the ROM Table entry always points to the 4KB block which
contains the Peripheral ID and Component ID registers, and this 4KB might occupy any 4KB block in the Debug
Register File of the component.

Previous versions of this specification used the PIDR4.SIZE field to define the size and base address of the
component. The use of the PIDR4.SIZE field is deprecated, and Arm recommends that for all components:

• Debuggers ignore the value of PIDR4.SIZE.

• New components set PIDR4.SIZE to zero.

Previous versions of this specification required the Peripheral ID and Component ID registers to occupy the highest
4KB block of the Debug Register File. This requirement is removed.

In general, the ROM Table indicates all the valid addresses in the memory map of the connection from the ADI to
the system being debugged. For more information about accesses to addresses that are not pointed to by the ROM
Table, see MEMTYPE, Memory Type Register on page D2-306.

Arm recommends that the debug component base address is aligned to the largest translation granule supported by
any PE that can access the component, which is up to 64KB for an Armv8 or Armv9 PE.

For more information about the Component and Peripheral ID Registers, see Arm® CoreSight™ Architecture
Specification.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D1-293
ID072524 Non-Confidential

D1 About ROM Tables
D1.5 Location of the ROM Table
D1.5 Location of the ROM Table

This section describes how to provide a pointer to the top-level ROM Table.

While entries in a ROM Table are always relative addresses, the top-level pointer to a ROM Table always takes the
form of an absolute address.

From an AP or a DP

Each MEM-AP contains a BASE register that indicates one of the following:

• The base address of a ROM Table.

• The address of a debug component, which must be the only debug component that is
accessible from that AP. The memory system that is accessed by this MEM-AP does not
contain a ROM Table.

• No debug components are accessible from this AP, which is indicated by BASE.P having the
value 0b0.

Each DP contains the BASEPTR0-BASEPTR1 registers that indicate one of the following:

• The base address of a ROM Table.

• The address of a debug component, which is the only debug component that is directly
accessible from this DP. The debug component might be an AP that provides indirect access
to more debug components.

• No debug components are accessible from this DP, which is indicated by BASEPTR0.VALID
having the value 0b0.

From processor cores

The operating system or debug monitor must be aware of the memory map of the system to find the
ROM Table and debug components.
D1-294 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D1 About ROM Tables
D1.6 ROM Table hierarchies
D1.6 ROM Table hierarchies

Normally, each ROM Table entry, ROMENTRY<n>, points to the memory space of a debug component. The
Component and Peripheral ID Registers for that component start at offset 0xFD0 in a 4KB section of the memory
space of the component. The Component class field CIDR1.CLASS, bits [7:4] of the Component ID1 Register,
identifies the type of the component. This field is described in CIDR0-CIDR3 in Arm® CoreSight™ Architecture
Specification.

ROMENTRY<n> can point to another ROM Table, which is referred to as a lower-level ROM Table.

A ROM Table can include more than one entry that points to lower-level ROM Tables, and a hierarchy of ROM
Tables can exist. All ROM Tables within that hierarchy must be scanned to discover all the debug components in
the system.

A system with an interface that is compliant with ADIv6 can contain both Class 0x1 and Class 0x9 ROM Tables in
a single implementation.

When identifying Class 0x1 ROM Tables, DEVARCH and DEVTYPE are treated as having a value of 0.

If more than the maximum number of ROM Table entries are required, the ROM Table must be expanded by
creating a ROM Table hierarchy which contains as many ROM Table entries as necessary.

The MEM-AP BASE register must point to the top-level ROM Table in the hierarchy.

Figure D1-1 shows an example of a ROM Table hierarchy.

Figure D1-1 ROM Table hierarchy example

A hierarchy of ROM Tables might increase the total number of ROM Table entries in the system.

A hierarchy might be implemented for some other reason, for example to reflect the logical organization of the
debug components of the system. There might be only a few entries in each ROM Table within a hierarchy.

D1.6.1 Peripheral ID Registers in lower-level ROM Tables

The Peripheral ID value that is obtained from the Peripheral ID Registers of any ROM Table that is not a top-level
ROM Table is used to identify the subsystem described by the ROM Table. It is not used to identify the SoC or
platform.

D1.6.2 Component Revision Numbers

When a component is changed, the revision number that is contained in the Unique Component Identifier of that
component must be changed to ensure that debug tools can differentiate the versions of the component, which
usually involves changing one or more of PIDR2.REVISION and PIDR3.REVAND. For details about the Unique
Component Identifier, see the Arm® CoreSight™ Architecture Specification v3.0.

ROM Table B

ROM Table C

Entry 4

Entry 3

ROM Table E

ROM Table A

Entry 2

Entry 5

Top level

ROM Table D

Entry 2

ROM Table F

Level 2 Level 3 Level 4
MEM-AP

BASE Register
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D1-295
ID072524 Non-Confidential

D1 About ROM Tables
D1.6 ROM Table hierarchies
In systems that are designed as multiple subsystems of components, each subsystem has a ROM table that indicates
the locations of the components in the subsystem. When changing the revision of a component in a subsystem:

• The revision of the subsystem that the component is part of may or may not change.

• The revision number of the ROM table describing that subsystem may or may not change.

As a result, debug tools must inspect the revision of each component within a subsystem to uniquely identify the
revision of those components and must not rely on the revision of the ROM table to uniquely identify the revision
of all the components within the subsystem.

For example, if the revision number of a trace macrocell that is part of a subsystem with a ROM table that describes
the layout of the subsystem changes, the revision of the ROM table might not change, and multiple instances of the
subsystem with the same revision number could exist in the ROM table, even though the components making up
the subsystems have different revision numbers for each subsystem.

D1.6.3 Prohibited ROM Table references

Every debug component within a system must appear only once in the ROM Table, or ROM Table hierarchy, that
is visible to an external debugger. Figure D1-2 shows a prohibited case, where entries in ROM Tables B and C both
point to ROM Table D.

Figure D1-2 Prohibited duplicate ROM Table reference from ROM Table

Figure D1-3 shows a similar prohibited case, where entries in ROM Table A and MEM-AP 2 both point to ROM
Table B.

Figure D1-3 Prohibited duplicate ROM Table reference from MEM-AP

In addition, circular ROM Table references are prohibited. A ROM Table entry must not point to a ROM Table that
directly or indirectly points to itself. In particular, ROM Table entries must not point back to the top-level ROM
Table, as is shown in Figure D1-4 on page D1-297, where both ROM Table B and ROM Table C have prohibited
links back to ROM Table A.

ROM Table B

ROM Table C

ROM Table A

Entry 2

Entry 5

Top level

Entry 4

Entry 3

ROM Table D

Level 2 Level 3
MEM-AP

BASE Register

ROM Table BROM Table A

Top level Level 1
MEM-AP 1

BASE Register

MEM-AP 2
BASE Register

Entry 4
D1-296 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D1 About ROM Tables
D1.6 ROM Table hierarchies
Figure D1-4 Prohibited circular ROM Table references

There is no requirement that components in separate ROM Table hierarchies must be in separate systems, which
includes multiple APs in a single ADI implementation, and multiple ADI implementations. For example, if
MEM-AP 1 in ADI implementation 1 points to a hierarchy of ROM Tables which includes a pointer to trace
macrocell A, and MEM-AP 2 in ADI implementation 2 points to a hierarchy of ROM Tables which includes a
pointer to trace sink B, then trace from trace macrocell A can be collected by trace sink B, as shown in Figure D1-5.

Figure D1-5 Components in separate ROM Table hierarchies

ROM Table B ROM Table CROM Table A
Entry 1

Top level

Entry 3

Level 2 Level 3

Entry 2

MEM-AP
BASE Register

Trace macrocell AROM Table A

Top level Level 1
1 BASE
Register

MEM-AP 2
BASE Register

Entry 4

Trace sink BROM Table B

Entry 3

ADI 1

ADI 2
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D1-297
ID072524 Non-Confidential

D1 About ROM Tables
D1.6 ROM Table hierarchies
D1-298 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Chapter D2
Class 0x1 ROM Tables

The chapter describes Class 0x1 ROM Tables. It includes the following sections:

• About Class 0x1 ROM Tables on page D2-300.

• Class 0x1 ROM Table summary on page D2-301.

• Use of power domain IDs on page D2-303.

• Register Descriptions on page D2-305.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D2-299
ID072524 Non-Confidential

D2 Class 0x1 ROM Tables
D2.1 About Class 0x1 ROM Tables
D2.1 About Class 0x1 ROM Tables

In a Class 0x1 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x1, which identifies the component as a Class 0x1 ROM
Table.

• The PIDR4.SIZE field must be 0, because a ROM Table must occupy a single 4KB block of memory.

Class 0x1 ROM Tables can be used alongside Class 0x9 ROM Tables, and both Class 0x1 and Class 0x9 ROM
Tables might be present in systems with an ADIv6-compliant interface.

See also:

• For general information about ROM Tables, see Chapter D1 About ROM Tables.

• For information about the Component and Peripheral ID Registers, see Arm® CoreSight™ Architecture
Specification. The class configuration is described in the field description of the CIDR1.CLASS field, in
section CIDR0-CIDR3 in Arm® CoreSight™ Architecture Specification.

• For information about Class 0x9 ROM Tables, see Chapter D3 Class 0x9 ROM Tables.
D2-300 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D2 Class 0x1 ROM Tables
D2.2 Class 0x1 ROM Table summary
D2.2 Class 0x1 ROM Table summary

This section summarizes the characteristics of Class 0x1 ROM Tables.

D2.2.1 Class 0x1 ROM Table Layout

A Class 0x1 ROM Table:

• Occupies a single 4KB block of memory, and starts at offset 0x000 in this block.

• Has a series of entries, each of which is a register.

• Has a final entry, which is one of the following:

— A marker with the value 0x00000000, which signals the end of the ROM Table.

— A regular entry at offset 0xEFC. A ROM Table entry at this offset is always the final entry, even if it
does not have the value 0x00000000.

• Almost always has an unused area between the entry that marks the end of the ROM Table entries and the
start of the reserved area at offset 0xF00. This unused area is reserved, RES0. If a ROM Table contains 960
entries, there is no unused area.

Table D2-1 shows the Class 0x1 ROM Table registers, in order of their address offset in the 4KB block where the
programmers’ model resides. For detailed descriptions of each register, see Register Descriptions on page D2-305.

Table D2-1 ROM Table register summary

Offset Type Name Description

ROM Entries, including any unused area

0x000 to (N–1)×4 RO ROMENTRY<n> Up to 960 ROM Table entriesa. The end of the area
that contains ROM Table entries is
IMPLEMENTATION DEFINED, and depends on the
number of ROM Table entries, which is denoted N.

a. An implementation is unlikely to require more than the maximum number of entries in a ROM Table. However,
ROM Table hierarchies on page D1-295 describes how larger ROM Tables can be constructed.

N×4 RO ROMENTRY<n>
with value
0x00000000

Marker that indicates the final entry in a ROM Table
with fewer than 960 entries. The offset of this entry
depends on the number of ROM Table entries, which
is denoted N.

See also ROM Table entries that are marked not
present on page D2-302.

(N+1)×4 to 0xEFC - Unused area of the
ROM Table.

RES0.

The offset depends on the number of ROM Table
entries, which is denoted N. This area is not present
if N is 960.

Reserved area

0xF00 - 0xFC8 - Reserved area of the
ROM Table.

RES0.

MEMTYPE and ID registers

0xFCC RO MEMTYPE Memory Type Register.

0xFD0 - 0xFDC RO PIDR4-PIDR7 Peripheral Identification Registers.

0xFE0 - 0xFEC RO PIDR0-CIDR3

0xFF0 - 0xFFC RO CIDR0-CIDR3 Component Identification Registers.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D2-301
ID072524 Non-Confidential

D2 Class 0x1 ROM Tables
D2.2 Class 0x1 ROM Table summary
D2.2.2 ROM Table entries that are marked not present

The descriptions of the debug components are stored in sequential locations in the ROM Table, starting at the ROM
Table base address. However, a ROM Table entry can be marked not present by setting the PRESENT field of the
entry to a value that indicates that the entry is not present.

When scanning the ROM Table, an entry that is marked as not present must be skipped. Unless the entry has the
value 0x00000000, however, it must not be assumed that an entry that is marked not present represents the end of the
ROM Table. For example, a ROM Table might be generated using static configuration tie-offs that indicate the
presence or absence of particular devices, giving not present entries in the ROM Table.
D2-302 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D2 Class 0x1 ROM Tables
D2.3 Use of power domain IDs
D2.3 Use of power domain IDs

If the following conditions are met, a Class 0x1 ROM Table entry, ROMENTRY<n>, has a valid power domain ID
m:

• ROMENTRY<n>.PRESENT is 0b1, indicating that the ROM Table entry is present.

• ROMENTRY<n>.POWERIDVALID is 0b1, indicating that the power ID is valid.

• ROMENTRY<n>.POWERID is m, the power domain ID.

If any of the ROMENTRY<n> has a valid power domain ID, the ROM Table must include a valid entry that points
to a power requester that enables a debugger to request power to the power domains that are specified in the ROM
Table. The power requester must comply with the following rules:

• The power requester must not have a valid power domain ID.

• The power requester must be in the same power domain as the ROM Table.

For any component with a valid power domain ID, Arm recommends that, before accessing any register in a
component, the debugger first accesses the power requester to request that power is applied to the component.
Otherwise the component might not be powered, or it might be powered down at any time.

D2.3.1 Power domain entries

The power domain ID is specific to components identified by the Class 0x1 ROM Table, which enables hierarchies
of power domains to be constructed with each level enabling access to a level below.

Figure D2-1 shows an example Class 0x1 ROM Table that indicates the locations of three components.

Figure D2-1 Single Class 0x1 ROM Table with power domain IDs

In Figure D2-1, the first component, p, has no valid power domain ID and is the power requester. The other two
components, m and n, have power domain IDs of 0 and 1 respectively. The debugger requests power for these
components, by using the power requester p.

Figure D2-2 on page D2-304 shows an example system with nested power domains.

Power domain 0

Power domain 1

Class 0x1 ROM table A

0x00003017
ROMENTRY<n>

0x00000000
Final Entry

Component n

0x00002007
ROMENTRY<m> Component m

0x00001003
ROMENTRY<p> Power requester p
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D2-303
ID072524 Non-Confidential

D2 Class 0x1 ROM Tables
D2.3 Use of power domain IDs
Figure D2-2 Multiple ROM Tables with nested power domain IDs

In Figure D2-2, ROM Table A is the top-level ROM Table and indicates the presence of:

• Power requester p, which must be in the same power domain as the ROM.

• Component m, which is in power domain 0.

• ROM Table B, which is in power domain 1.

ROM Table B indicates the presence of power requester q and components i and j, so power for components i and
j is requested through power requester q. Because power requester q is in power domain 1, the power domains it
controls are subdomains of power domain 1, and are labeled 1.0 and 1.1.

The power domain IDs indicated by ROM Table B are different from the power domain IDs indicated by ROM
Table A and are nested within power domain 1.

D2.3.2 Algorithm to discover power domain IDs

Inspect each Class 0x1 ROM Table in the system, starting at the top-level ROM Table. For each valid Class 0x1
ROM Table entry ROMENTRY<n>:

1. If ROMENTRY<n>.POWERIDVALID is 0b1, the power domain ID information is present. To request power
for this entry, use the ROMENTRY<n>.POWERID field, bits[8:4], to program the power Requester.

2. If ROMENTRY<n>.POWERIDVALID is 0b0, no power domain ID information is present.

• Inspect the component and determine if it is a power Requester. Power Requester components have no
power domain ID. Make a note of whether a power Requester is detected.

• If the component is not a power Requester, the absence of a power domain ID value indicates that it is
powered, and no power requests are required to power this component.

Note

If no power Requester is indicated in this ROM Table, all entries in this ROM Table must not have valid
power domain IDs.

If there are Class 0x9 ROM Tables in the system, use the algorithm that is described in Chapter D3 Class 0x9 ROM
Tables, section Algorithm to discover power domain IDs to discover power domains in them.

Power domain 0

Power domain 1

Class 0x1 ROM table A

0x00003017
ROMENTRYn

0x00000000
Final Entry

0x00002007
ROMENTRYm Component m

Class 0x1 ROM table B

0x00003017
ROMENTRYj

0x00000000
Final Entry

0x00002007
ROMENTRYi

Power domain 1.0Component i

Power domain 1.1Component j

0x00001003
ROMENTRYp Power requester p

0x00002003
ROMENTRYq Power requester q
D2-304 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D2 Class 0x1 ROM Tables
D2.4 Register Descriptions
D2.4 Register Descriptions

This section provides detailed descriptions of the registers in a Class 0x1 ROM Table, in alphabetical order.

D2.4.1 CIDR0-CIDR3, Component Identification Registers

This section describes the bit assignments for ROM Table components. For a full description of the CIDR, see
CIDR0-CIDR3 in Arm® CoreSight™ Architecture Specification.CIDR1

The CIDR0-CIDR3 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

CIDR0-CIDR3 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Four 32-bit management registers.

Field Descriptions

The CIDR0-CIDR3 bit assignments are:

CIDR3 bits[31:8]

RES0.

PRMBL_3, CIDR3 bits[7:0]

0xB1.

Default

RO

31 0

RES0 PRMBL_3

8 7

CIDR3 0xFFC

31 0

RES0 PRMBL_2

8 7

CIDR2 0xFF8

31 0

RES0 PRMBL_1

8 7

CLASS

4 3

CIDR1 0xFF4

31 0

RES0 PRMBL_0

8 7

CIDR0 0xFF0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D2-305
ID072524 Non-Confidential

D2 Class 0x1 ROM Tables
D2.4 Register Descriptions
CIDR2 bits[31:8]

RES0.

PRMBL_2, CIDR2 bits[7:0]

0x05.

CIDR1 bits[31:8]

RES0.

CLASS, CIDR1 bits[7:4]

0x1.

PRMBL_1, CIDR1 bits[3:0]

0x0.

CIDR0 bits[31:8]

RES0.

PRMBL_0, CIDR0 bits[7:0]

0x0D.

Accessing CIDR0-CIDR3

CIDR0-CIDR3 can be accessed at the following address:

D2.4.2 MEMTYPE, Memory Type Register

The MEMTYPE characteristics are:

Purpose

Identifies the type of memory present on the bus that connects to the ROM Table. In
particular, it identifies whether system memory is connected to the bus.

Usage constraints

MEMTYPE is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Component
Offset

CIDR0 CIDR1 CIDR2 CIDR3

ROM Table 0xFF0 0xFF4 0xFF8 0xFFC

Default

R0
D2-306 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D2 Class 0x1 ROM Tables
D2.4 Register Descriptions
Field Descriptions

The MEMTYPE bit assignments are:

Bits [31:1]

Reserved, RES0.

SYSMEM, bit [0]

System memory present. Indicates whether system memory is present on the bus that connects to
the ROM Table. The possible values are:

0b0 System memory not present on bus. This value indicates that the bus is a dedicated
debug bus.

0b1 System memory is also present on this bus.

Use of SYSMEM by software is deprecated, and debuggers should ignore the value of this field.

Setting SYSMEM to 0b1 is deprecated, and SYSMEM is permitted to have the value 0b0 in systems
where there are other valid addresses in the memory system.

MEMTYPE.SYSMEM indicates the memory accesses that can be performed:

When SYSMEM is 0b0

The ROM Table indicates all the valid addresses in the memory system, and the result
of accessing any other address is UNPREDICTABLE. For more information, see The
component address on page D1-293.

When SYSMEM is 0b1

There might be other valid addresses in the memory system. The result of accessing
these addresses is IMPLEMENTATION DEFINED, and:

• The ADI specification does not include any mechanism that can be used to
discover what addresses it can access, other than the addresses that are listed in
the ROM Table.

• If accesses are performed to addresses that are not in the ROM Table, there can
be side effects on the system.

Accessing MEMTYPE

MEMTYPE can be accessed at the following address:

D2.4.3 PIDR0-PIDR7, Peripheral Identification Register

This section describes the bit assignments for ROM Table components. For a full description of the PIDR, see
PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

The PIDR0-PIDR7 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

Component Offset

ROM Table 0xFCC

RES0

31 0

SYSMEM

1

ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D2-307
ID072524 Non-Confidential

D2 Class 0x1 ROM Tables
D2.4 Register Descriptions
PIDR0-PIDR7 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Eight 32-bit management registers.

Field Descriptions

The PIDR0-PIDR7 bit assignments are:

PIDR3 bits[31:8]

Default

RO

31 0

RES0

8 7

CMODREVAND

4 3

PIDR_3 0xFEC

JEDEC

31 0

RES0

8 7

DES_1REVISION

4 3

1

2

PIDR_2 0xFE8

31 0

RES0 PART_1

8 7

DES_0

4 3

PIDR_1 0xFE4

31 0

RES0 PART_0

8 7

PIDR_0 0xFE0

31 0

RES0PIDR_7 0xFDC

31 0

RES0PIDR_6 0xFD8

31 0

RES0PIDR_5 0xFD4

31 0

RES0

8 7

DES_2SIZE

4 3

PIDR_4 0xFD0
D2-308 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D2 Class 0x1 ROM Tables
D2.4 Register Descriptions
RES0.

REVAND, PIDR3 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

CMOD, PIDR3 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture
Specification...

PIDR2 bits[31:8]

RES0.

REVISION, PIDR2 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

JEDEC, PIDR2 bits[3]

0b1

DES_1, PIDR2 bits[2:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR1 bits[31:8]

RES0.

DES_0, PIDR1 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PART_1, PIDR1 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR0 bits[31:8]

RES0.

PART_0, PIDR0 bits[7:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR7 bits[31:0]

RES0.

PIDR6 bits[31:0]

RES0.

PIDR5 bits[31:0]

RES0.

PIDR4 bits[31:8]

RES0.

SIZE, PIDR4 bits[7:4]

0x0 A ROM Table occupies a single 4KB block of memory.

DES_2, PIDR4 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D2-309
ID072524 Non-Confidential

D2 Class 0x1 ROM Tables
D2.4 Register Descriptions
Accessing PIDR0-PIDR7

PIDR0-PIDR7 can be accessed at the following address:

D2.4.4 ROMENTRY<n>, Class 0x1 ROM Table entries

A Class 0x1 ROM Table contains up to 960 ROM Table entries. Each entry that is present, ROMENTRY<n>,
describes a single component, component n.

The series of ROM Table entries start at the base address of the ROM Table. The value of a ROMENTRY<n>
depends on the subsystem that is implemented.

The ROMENTRY<n> characteristics are:

Purpose

Describes a single debug component within the system.

Usage constraints

ROMENTRY<n> registers are accessible as follows:

Configurations

Included in all implementations. For details, see The component address on page D1-293.

Attributes

Up to 512 32-bit registers.

Field Descriptions

The ROMENTRY<n> bit assignments are:

OFFSET, bits[31:12]

The address of the component, relative to the base address of this ROM Table.

Negative values are permitted, using two’s complement.

Note

If FORMAT and PRESENT both have a value that is not equal to 0b0, OFFSET must not be zero,
because a zero address offset points back to the ROM Table that contains this ROMENTRY<n>.

For more information, see The component address on page D1-293.

Component
Offset

PIDR0 PIDR1 PIDR2 PIDR3 PIDR4 PIDR5 PIDR6 PIDR7

ROM Table 0xFE0 0xFE4 0xFE8 0xFEC 0xFD0 0xFD4 0xFD8 0xFDC

Default

RO

31 0

OFFSET

POWERIDVALID

ROMENTRY<n> 0x000 + (n×4)

FORMAT

12

POWERIDRES0

RES0

34891112

PRESENT
D2-310 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D2 Class 0x1 ROM Tables
D2.4 Register Descriptions
Bits[11:9]

RES0.

POWERID, bits[8:4]

The Power domain ID of the component. This field:

• Supports up to 32 Power domains using values 0x00 to 0x1F.

• Is only valid if the POWERIDVALID field, which consists of bit[2] of the same ROM Table
entry, is 0b1, otherwise this field must be RAZ.

For more information about Power domains, see the Arm® CoreSight™ Architecture Specification.

Bit[3]

RES0.

POWERIDVALID, bit[2]

Indicates if the Power domain ID field contains a Power domain ID:

0b0 A Power domain ID is not provided.

0b1 The POWERID field, which consists of bits[8:4] of the same ROM Table entry,
provides a Power domain ID.

FORMAT, bit[1]

Indicates the format of the ROM Table. This field has the following value:

RAO 32-bit ROM Table format.

PRESENT, bit[0]

Indicates whether an entry is present at this location in the ROM Table. This field can have one of
the following values:

0b0 The ROM entry is not present.

0b1 The ROM entry is present.

For more information, see ROM Table entries that are marked not present on page D2-302.

Accessing the ROMENTRY<n>

The ROMENTRY<n> for component n can be accessed at the following address:

Component Offset

ROM Table 0x000 + n×4
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D2-311
ID072524 Non-Confidential

D2 Class 0x1 ROM Tables
D2.4 Register Descriptions
D2-312 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Chapter D3
Class 0x9 ROM Tables

The chapter describes Class 0x9 ROM Tables. It includes the following sections:

• About Class 0x9 ROM Tables on page D3-314.

• Class 0x9 ROM Table summary on page D3-315.

• Use of power domain IDs on page D3-319

• Reset control on page D3-325

• Register descriptions on page D3-328.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-313
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.1 About Class 0x9 ROM Tables
D3.1 About Class 0x9 ROM Tables

In a Class 0x9 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x9, identifying the component as a CoreSight component.

• The Device Architecture Register, DEVARCH, identifies the component as a Class 0x9 ROM Table.

Class 0x9 ROM Tables can be used alongside Class 0x1 ROM Tables, and both Class 0x9 and Class 0x1 ROM
Tables might be present in systems with an ADIv6-compliant interface.

See also:

• For general information about ROM Tables, see Chapter D1 About ROM Tables.

• For information about the Component and Peripheral ID Registers, see Arm® CoreSight™ Architecture
Specification. The class configuration is described in the field description of the CIDR1.CLASS field, in
section CIDR0-CIDR3 in Arm® CoreSight™ Architecture Specification.

• For information about Class 0x1 ROM Tables, see Chapter D2 Class 0x1 ROM Tables.

The COM Port function can be included in a Class 0x9 ROM table. For more information, see the Advanced
Communications Channel Architecture Specification. One reason to include the COM Port function in a ROM table
is to provide means to enable debug access to the components indicated in the ROM table.
D3-314 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.2 Class 0x9 ROM Table summary
D3.2 Class 0x9 ROM Table summary

This section summarizes the characteristics of Class 0x9 ROM Tables.

D3.2.1 Class 0x9 ROM Table Layout

Table D3-1 shows the Class 0x9 ROM Table registers, in order of their address offset in the 4KB block where the
programmers’ model resides. For detailed descriptions of each register, see Register descriptions on page D3-328.

A Class 0x9 ROM Table:

• Occupies a single 4KB block of memory, and starts at offset 0x000 in this block.

• Has a series of entries, each of which is a register.

• Has a final entry, which is one of the following:

— A marker that signals the end of the ROM Table, which has an entry that is all zeros.

— A regular entry at offset 0x7FC. A ROM Table entry at this offset is always the final entry, even if its
PRESENT field does not have the value 0b00.

• Almost always has an unused area between the final entry of the ROM Table and the start of the reserved area
at offset 0x800. This unused area is RES0. If a ROM Table contains the maximum number of entries, there is
no unused area.

Table D3-1 ROM Table register summary

Offset Type Name Description

ROM Entries, including any unused area The number of ROM entries is denoted N.

The number of bytes making up a ROM entry, w, and
the maximum number of ROM entries, Nmax, depend
on the configuration of the DEVID register:

If DEVID.FORMAT == 0x0, w = 4 and Nmax = 512.

If DEVID.FORMAT == 0x1, w = 8 and Nmax = 256.

0x000 to (N–1)×w RO ROMENTRY<n> Up to N ROM entriesa. The end of the area that
contains ROM entries is IMPLEMENTATION DEFINED,
and depends on N.

N×w RO ROMENTRY<n>
with all bits having a
value of 0b0.

Marker that indicates the final entry in a ROM Table
with fewer than N entries. The offset of this entry
depends on N.

See also ROM Table entries that are marked not
present on page D3-318.

(N+1)×w to 0x7FC - Unused area of the
ROM Table.

RES0.

The offset depends on N. This area is not present if N
is equal to the maximum number of ROM entries,
Nmax.

See also ROM Table entries that are marked not
present on page D3-318.

Reserved area

0x800 - 0x9FC - Reserved. RES0.

Power and reset registers

0xA00 - 0xA7C RW DBGPCR<n> Debug Power Control Registers.

0xA80 - 0xAFC RW DBGPSR<n> Debug Power Status Registers.

0xB00 -0xB7C RW SYSPCR<n> System Power Control Registers.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-315
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.2 Class 0x9 ROM Table summary
0xB80 - 0xBFC RW SYSPSR<n> System Power Status Registers.

0xC00 RO PRIDR0 Power Request Identification Register 0.

0xC04 - 0xC0C - - RES0.

0xC10 RW DBGRSTRR Debug Reset Request Register.

0xC14 RO DBGRSTAR Debug Reset Acknowledge Register.

0xC18 RW SYSRSTRR System Reset Request Register.

0xC1C RO SYSRSTAR System Reset Acknowledge Register.

0xC20-0xCFC - - RES0.

COM port

0xD00-0xD7C - - COM Port programmers’ model. For more
information, see the Advanced Communications
Channel Architecture Specification.

Reserved area

0xD80 -0xEFC - - RES0.

CoreSight management registers

0xF00 RW ITCTRL Integration Mode Control Register.

0xF04-0xF9C - - RES0.

0xFA0 RW CLAIMSET Claim Tag Registers.

0xFA4 RW CLAIMCLR

0xFA8 RO DEVAFF0 Device Affinity Registers.

0xFAC RO DEVAFF1

0xFB0 WO LAR Lock Access and Lock Status Registers.

0xFB4 RO LSR

0xFB8 RO AUTHSTATUS Authentication Status Register.

0xFBC RO DEVARCH Device Architecture Register.

0xFC0 RO DEVID2 Device ID Registers.

0xFC4 RO DEVID1

0xFC8 RO DEVID Device ID Register.

0xFCC RO DEVTYPE Device Type Register.

0xFD0-0xFDC RO PIDR4-PIDR7 Peripheral Identification Registers.

0xFE0-0xFEC RO PIDR0-PIDR3

0xFF0-0xFFC RO CIDR0-CIDR3 Component Identification Registers.

Table D3-1 ROM Table register summary (continued)

Offset Type Name Description
D3-316 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.2 Class 0x9 ROM Table summary
a. An implementation is unlikely to require more than the maximum number of entries in a ROM Table. However,
ROM Table hierarchies on page D1-295 describes how larger ROM Tables can be constructed.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-317
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.2 Class 0x9 ROM Table summary
D3.2.2 ROM Table entries that are marked not present

The descriptions of the debug components are stored in sequential locations in the ROM Table, starting at the ROM
Table base address. However, a ROM Table entry can be marked not present by setting the PRESENT field of the
entry to a value that indicates that the entry is not present:

• If ROMENTRY<n>.PRESENT has the value 0b10, it is not present and must be skipped. Do not assume that
the entry represents the end of the ROM Table when scanning the ROM Table. For example, a ROM Table
might be generated using static configuration tie-offs that indicate the presence or absence of particular
devices, giving not present entries in the ROM Table.

• If ROMENTRY<n>.PRESENT has the value 0b00, it is not present and indicates the end of the ROM Table.
D3-318 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.3 Use of power domain IDs
D3.3 Use of power domain IDs

If the following conditions are met, a Class 0x9 ROM Table entry, ROMENTRY<n>, has a valid power domain ID
m:

• ROMENTRY<n>.PRESENT is 0b11, indicating that the ROM Table entry is present.

• ROMENTRY<n>.POWERIDVALID is 0b1, indicating that the power ID is valid.

• ROMENTRY<n>.POWERID is m, the power domain ID.

The mechanism to power up power domain m can be one of the following:

• If DBGPCR<m>.PRESENT reads as 0b1, the power request mechanism for DBGPCR<m>.PR is
implemented, and can be used to request power for power domain m, as described in the field descriptions
for the DBGPCR<n> register.

• If DBGPCR<m>.PRESENT reads as 0b0, the power request mechanism for power domain m is
IMPLEMENTATION DEFINED.

Arm recommends that debug tools do not attempt accesses to any component with a valid power domain ID without
first powering up the component.

D3.3.1 Power domain entries

The power domain ID is specific to components identified by the Class 0x9 ROM Table, which enables hierarchies
of power domains to be constructed with each level enabling access to a level below.

Figure D3-1 shows an example Class 0x9 ROM Table that indicates the locations of two components, m and n.
Components m and n are in debug power domain 0 and 1, respectively. The debugger requests power for these power
domains through the power and reset registers in the programmers’ model of ROM Table A.

Figure D3-1 Single ROM Table with power domain IDs

Power domain 0

Power domain 1

Class 0x9 ROM table A

0x00003017
ROMENTRY<n>

0x00000000
Final Entry

Component n

0x00002007
ROMENTRY<m> Component m

Power and reset registers
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-319
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.3 Use of power domain IDs
Figure D3-2 shows an example system with nested power domains.

Figure D3-2 Multiple ROM Tables with nested power domain IDs

In Figure D3-2, ROM Table A is the top-level ROM Table and indicates the presence of:

• Component m, which is in debug power domain ID 0.

• Component n, which is a Class 0x9 ROM Table, ROM Table B, in debug power domain 1.

ROM Table B indicates the presence of components i and j, and power for these components is requested through
the power and reset registers in the programmers’ model of ROM Table B. Because ROM Table B is in power
domain 1, these power domains are subdomains of power domain 1, and are labeled 1.0 and 1.1.

The power domain IDs indicated by ROM Table B are different from the power domain IDs indicated by ROM
Table A and are nested within power domain 1.

D3.3.2 Algorithm to discover power domain IDs

Inspect each Class 0x9 ROM Table in the system, starting at the top-level ROM Table. For each valid Class 0x9
ROM Table entry ROMENTRY<n>:

1. If ROMENTRY<n>.POWERIDVALID is 0b1, the power domain ID information is present. To request power
for this entry, use the DBGPCR<m> register in the programmers' model of the ROM Table, using the value
of m that is described in ROMENTRY<n>.POWERID.

2. If ROMENTRY<n>.POWERIDVALID is 0b0, no power domain ID information is present, so the component
is powered.

If there are Class 0x1 ROM Tables in the system, use the algorithm that is described in Chapter D2 Class 0x1 ROM
Tables, section Algorithm to discover power domain IDs to discover power domains in them.

D3.3.3 Debug power requests

If access to a component is needed and the ROM entry for that component has a valid power domain ID, the
debugger must request power to that component before attempting to access it.

Power domain 0

Power domain 1

Class 0x9 ROM table A

0x00003017
ROMENTRY<n>

0x00000000
Final Entry

0x00002007
ROMENTRY<m> Component m

Power and reset registers

Class 0x9 ROM table B

0x00003017
ROMENTRY<j>

0x00000000
Final Entry

0x00002007
ROMENTRY<i>

Power and reset registers
for power domains 1.x

Power domain 1.0Component i

Power domain 1.1Component j
D3-320 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.3 Use of power domain IDs
The process for issuing a power request for a debug component is shown in Figure D3-3.

Figure D3-3 Debug power request process

A power request for a component must be removed if one of the following applies:

• The component is no longer in use. Removing the power request allows the system to consider removing
power to the power domain that includes the component.

• A mechanism to preserve the component state after it is powered down is in place, for example an automated
save and restore mechanism.

start

read ROMENTRY<n>

extract
ROMENTRY<n>.
POWERIDVALID0b0

read DEVID.PRR

0b1

0b0
find a GPR using the ROM
Table entries for which n!=p

0b1

GPR: set
CDBGPWRUPREQ[p]

to 0b1

GPR: read
CDBGPWRUPACK[p]

0b1

0b0

read PRIDR0.VERSION
!=0b0001

read
DBGPCR<p>.PRESENT

!=0b11

0b0

0b0001

set DBGPCR<p>.PR to 0b1

read
DBGPCR<p>.PS

0b1

0b11

use IMPLEMENTATION DEFINED
mechanism to power up the

component

0b11

read
DBGPSR<p>.PS

0b00

wait for a short period to
ensure that the system has

responded to DBGPCR<p>.PR

0b01

component is
powered

extract
p=ROMENTRY<n>.POWERID
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-321
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.3 Use of power domain IDs
The process for removing a power request for a debug component is shown in Figure D3-4.

Figure D3-4 Debug power request removal process

It is IMPLEMENTATION DEFINED whether powerup requests using DBGPCR<n> registers are affected by the
authentication interface, and one of the following applies:

• The powerup requests are considered Non-invasive debug functions, and are ignored when all debug is
disabled. This is the Arm recommended behavior.

• The powerup requests are considered Non-secure invasive debug functions, and are ignored when all
invasive debug is disabled.

• The powerup requests are considered Root invasive debug functions, and are ignored when Root invasive
debug is disabled.

• The powerup requests are considered Secure invasive debug functions and are ignored when Secure invasive
debug is disabled.

• The powerup requests are not affected by the authentication interface.

start

read ROMENTRY<n>

extract
ROMENTRYn.

POWERIDVALID0b0

read
DEVID.PRR

0b1

0b0
find a GPR using the ROM
Table entries for which n!=p

0b1

GPR: set
CDBGPWRUPREQ[p]

to 0b0

GPR: read
CDBGPWRUPACK[p]

0b0

0b1

read
PRIDR0.VERSION

!=0b0001

read
DBGPCR<p>.PRESENT

0b0

0b0001

set DBGPCR<p>.PR to 0b0

0b1

use IMPLEMENTATION DEFINED
mechanism to remove power

request

!=0b11

read
DBGPSR<p>.PS

0b11

end

extract
p=ROMENTRY<n>.POWERID
D3-322 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.3 Use of power domain IDs
Note

Arm® Realm Management Extension (RME) System Architecture places requirements on power state transitions to
ensure the RME security guarantees. These requirements apply to powerup requests from a Class 0x9 ROM Table.

D3.3.4 System power requests

A debugger might need to access power domains that are supported by the system, but for which no power domain
IDs are defined in the ROM Table. Examples include power domains for the system interconnect, and normal
system memory. The power request functionality for these systems might include optional system power request
controls.

It is IMPLEMENTATION DEFINED which system power domains are associated with a system power request.

The process for issuing a power request for a system component is shown in Figure D3-5.

Figure D3-5 System power request process

start

read
DEVID.PRR

0b1

0b0
find a GPR

using the ROM Table

GPR: set
CSYSPWRUPREQ[n]

to 0b1

GPR: read
CSYSPWRUPACK[n]

0b1

0b0

read
PRIDR0.VERSION

!=0b0001

read
SYSPCR<n>.PRESENT

!=0b11

0b0

0b0001

set SYSPCR<n>.PR to 0b1

read
SYSPSR<n>.PS

0b1

0b11

use IMPLEMENTATION DEFINED
mechanism to power up the

system domain

0b11

read
SYSPSR<p>.PS

0b00

wait for a short period to
ensure that the system has

responded to SYSPCR<n>.PR

0b01

system domain
is powered
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-323
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.3 Use of power domain IDs
The process for removing a power request for a system component is shown in Figure D3-6.

Figure D3-6 System power request removal process

It is IMPLEMENTATION DEFINED whether powerup requests using SYSPCR<n> registers are affected by the
authentication interface. One of the following applies for powerup request considerations:

• The powerup requests are considered Non-invasive debug functions, and are ignored when all debug is
disabled. This is the Arm recommended behavior.

• The powerup requests are considered Non-secure invasive debug functions, and are ignored when all
invasive debug is disabled.

• The powerup requests are considered Root invasive debug functions, and are ignored when Root invasive
debug is disabled.

• The powerup requests are considered Secure invasive debug functions and are ignored when Secure invasive
debug is disabled.

• The powerup requests are not affected by the authentication interface.

Note

Arm® Realm Management Extension (RME) System Architecture places requirements on power state transitions to
ensure the RME security guarantees. These requirements apply to powerup requests from a Class 0x9 ROM Table.

start

read
DEVID.PRR

0b1

0b0
find a GPR using the ROM

Table

GPR: set
CSYSPWRUPREQ[n]

to 0b0

GPR: read
CSYSPWRUPACK[n]

0b0

0b1

read
PRIDR0.VERSION

!=0b0001

read
SYSPCR<n>.PRESENT

0b0

0b0001

set SYSPCR<n>.PR to 0b0

0b1

use IMPLEMENTATION DEFINED
mechanism to remove power

request

!=0b11

read
SYSPSR<n>.PS

0b11

end
D3-324 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.4 Reset control
D3.4 Reset control

The reset control registers in the ROM Table can be used to issue reset requests:

• The debug power control registers, DBGRSTRR and DBGRSTAR, can be used to manage a reset request for
a debug reset domain, as described in Debug reset control.

• The system power control registers, SYSRSTRR and SYSRSTAR, can be used to manage a reset request for
a system reset domain, as described in System reset control on page D3-326.

For detailed descriptions of the ROM Table registers, see Register descriptions on page D3-328.

D3.4.1 Debug reset control

The DBGRSTRR in a Class 0x9 ROM Table provides a debug logic reset request function.

The process for issuing a reset request for a debug component is shown in Figure D3-7. When performing a debug
reset request, the debugger must proceed through each step of this process.

Figure D3-7 Debug reset request process

start

write 0b1 to
DBGRSTRR.DBGRR

read
DBGRSTAR.DBGRA

read
DBGRSTRR.DBGRR0b0

write 0b0 to
DBGRSTRR.DBGRR

0b1

0b0

read
DBGRSTAR.DBGRA

0b1

reset sequence complete

0b1

0b0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-325
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.4 Reset control
When a debug reset request is issued using DBGRSTRR.DBGRR and the debug reset is performed, it is
IMPLEMENTATION DEFINED how long the debug logic is held in reset, and is one of the following:

• DBGRSTAR.DBGRA takes the value 0b1 in response to the debug reset starting. The debug logic is held in
reset for the entire period that DBGRSTRR.DBGRR == 0b1 and DBGRSTAR.DBGRA == 0b1. When
DBGRSTRR.DBGRR becomes 0b0, either due to being explicitly written or due to being reset by the debug
reset, DBGRSTAR.DBGRA becomes 0b0 after the debug logic has been released from reset.

• The debug logic is reset in response to a rising edge on DBGRSTRR.DBGRR and is released from reset
without waiting for DBGRSTRR.DBGRR to become 0b0. DBGRSTAR.DBGRA takes the value 0b1 in
response to the debug logic being released from reset. When DBGRSTRR.DBGRR becomes 0b0, either due
to being explicitly written or due to being reset by the debug reset, DBGRSTAR.DBGRA becomes 0b0 in
response to the deassertion of DBGRSTRR.DBGRR.

If the Realm Management Extension is implemented and not disabled, reset requests using DBGRSTRR registers
are considered to be Root invasive debug functions. When Root invasive debug is disabled, debug reset requests are
ignored and it is IMPLEMENTATION DEFINED whether writes to DBGRSTRR are also ignored.

If the Realm Management Extension is not implemented or is disabled, and if the system implements separate
Secure and Non-secure functionality, reset requests using DBGRSTRR registers are considered to be Secure
invasive debug functions. When Secure invasive debug is disabled, debug reset requests are ignored and it is
IMPLEMENTATION DEFINED whether writes to DBGRSTRR are also ignored.

If the system does not implement separate Secure and Non-secure functionality, reset requests using DBGRSTRR
registers are considered to be invasive debug functions. When invasive debug is disabled, debug reset requests are
ignored and it is IMPLEMENTATION DEFINED whether writes to DBGRSTRR are also ignored.

D3.4.2 System reset control

The SYSRSTRR and SYSRSTAR in a Class 0x9 ROM Table provide a system reset request function.

When SYSRSTRR.SYSRR is 0b1, the system must be held in reset. When SYSRSTRR.SYSRR is 0b1, a reset of
any debug logic, for example the debug interface and logic on a processor, is permitted to happen, but the debug
logic must be released from reset as soon as it has been reset. Releasing the debug logic allows a debugger to
configure the debug logic while holding the system in reset, resulting in the debug logic being programmed and
operating immediately after the system reset is released.

Note

If SYSRSTRR.SYSRR is reset by either a system reset or a debug reset, the system is not held in reset.

This function is similar to the nSRST function provided on some physical debug ports, see System reset control
behavior on page B2-89.

The process for issuing a system reset request is shown in Figure D3-8 on page D3-327. When performing a system
reset request, the debugger must proceed through each step of this process.
D3-326 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.4 Reset control
Figure D3-8 System reset request process

If the Realm Management Extension is implemented and not disabled, reset requests using SYSRSTRR registers
are considered to be Root invasive debug functions. When Root invasive debug is disabled, system reset requests
are ignored and it is IMPLEMENTATION DEFINED whether writes to SYSRSTRR are also ignored.

If the Realm Management Extension is not implemented or is disabled, and if the system implements separate
Secure and Non-secure functionality, reset requests using SYSRSTRR registers are considered to be Secure
invasive debug functions. When Secure invasive debug is disabled, system reset requests are ignored and it is
IMPLEMENTATION DEFINED whether writes to SYSRSTRR are also ignored.

If the system does not implement separate Secure and Non-secure functionality, reset requests using SYSRSTRR
registers are considered to be invasive debug functions. When invasive debug is disabled, system reset requests are
ignored and it is IMPLEMENTATION DEFINED whether writes to SYSRSTRR are also ignored.

start

write 0b1 to
SYSRSTRR.SYSRR

read
SYSRSTAR.SYSRA

read
SYSRSTRR.SYSRR0b0

write 0b0 to
SYSRSTRR.SYSRR

0b1

0b0

read
SYSRSTAR.SYSRA

0b1

reset sequence complete

0b1

0b0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-327
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
D3.5 Register descriptions

D3.5.1 AUTHSTATUS, Authentication Status Register

The AUTHSTATUS characteristics are:

Purpose

AUTHSTATUS indicates whether certain functions are enabled.

Usage constraints

If any field in AUTHSTATUS indicates that a level of debug is not enabled, access to one or more
components indicated by the ROM table contents might not be possible. Debug tools might need to
use a mechanism to enable access to the components.

Note

If power requests are not affected by the authentication interface and the ROM table does not
support reset requests, this means that the ROM table does not need an authentication interface and
all the fields in AUTHSTATUS are permitted to have the value 0b00.

AUTHSTATUS is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The AUTHSTATUS bit assignments are:

Bits[31:28]

RES0. For more information, see Arm® Coresight™ Architecture Specification.

RTNID, bits[27:26]

Root non-invasive debug. For more information, see Arm® Coresight™ Architecture Specification.

RTID, bits[25:24]

Root invasive debug. For more information, see Arm® Coresight™ Architecture Specification.

SUNID, bits[23:22]

Secure Unprivileged non-invasive debug.

This field always takes the value 0b00, indicating this level of debug is not supported.

SUID, bits[21:20]

Secure Unprivileged invasive debug.

Default

RO

RES0 RTNID RTID SUNID SUID

NSUNID

NSUID RLNID RLID

01

NSID

2567

SID

89

SNID

NSNID

1011

HID

1231 141516171825262728 2423 22 13192021

HNID

34
D3-328 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
This field always takes the value 0b00, indicating this level of debug is not supported.

NSUNID, bits[19:18]

Non-secure Unprivileged non-invasive debug.

This field always takes the value 0b00, indicating this level of debug is not supported.

NSUID, bits[17:16]

Non-secure Unprivileged invasive debug.

This field always takes the value 0b00, indicating this level of debug is not supported.

RLNID, bits[15:14]

Realm non-invasive debug. For more information, see Arm® Coresight™ Architecture Specification.

RLID, bits[13:12]

Realm invasive debug. For more information, see Arm® Coresight™ Architecture Specification.

HNID, bits[11:10]

Hypervisor non-invasive debug.

This field always takes the value 0b00, indicating this level of debug is not supported.

HID, bits[9:8]

Hypervisor invasive debug.

This field always takes the value 0b00, indicating this level of debug is not supported.

SNID, bits[7:6]

Secure noninvasive debug. For more information, see Arm® Coresight™ Architecture Specification.

SID, bits[5:4]

Secure invasive debug. For more information, see Arm® Coresight™ Architecture Specification.

NSNID, bits[3:2]

Non-secure noninvasive debug. For more information, see Arm® Coresight™ Architecture
Specification.

NSID, bits[1:0]

Non-secure invasive debug. For more information, see Arm® Coresight™ Architecture
Specification.

Accessing AUTHSTATUS

AUTHSTATUS can be accessed at the following address:

D3.5.2 CIDR0-CIDR3, Component Identification Registers

This section describes the bit assignments for ROM Table components.

Component Offset

ROM Table 0xFB8
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-329
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
The CIDR0-CIDR3 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

CIDR0-CIDR3 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Four 32-bit management registers.

Field Descriptions

The CIDR0-CIDR3 bit assignments are:

CIDR3 bits[31:8]

RES0.

PRMBL_3, CIDR3 bits[7:0]

0xB1.

CIDR2 bits[31:8]

RES0.

PRMBL_2, CIDR2 bits[7:0]

0x05.

CIDR1 bits[31:8]

RES0.

CLASS, CIDR1 bits[7:4]

0x9 CoreSight component.

Default

RO

31 0

RES0 PRMBL_3

8 7

CIDR3 0xFFC

31 0

RES0 PRMBL_2

8 7

CIDR2 0xFF8

31 0

RES0 PRMBL_1

8 7

CLASS

4 3

CIDR1 0xFF4

31 0

RES0 PRMBL_0

8 7

CIDR0 0xFF0
D3-330 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
PRMBL_1, CIDR1 bits[3:0]

0x0.

CIDR0 bits[31:8]

RES0.

PRMBL_0, CIDR0 bits[7:0]

0x0D.

Accessing CIDR0-CIDR3

CIDR0-CIDR3 can be accessed at the following address:

D3.5.3 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register

The CLAIMSET and CLAIMCLR characteristics are:

Purpose

CLAIMSET and CLAIMCLR provide various bits that can be separately set and cleared to indicate
whether functionality is in use by a debug agent.

For a Class 0x9 ROM Table, no claim tags are implemented.

Usage constraints

CLAIMSET and CLAIMCLR are accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of 32-bit registers.

Field Descriptions

The CLAIMSET and CLAIMCLR bit assignments are:

CLAIMCLR, bits[31:0]

Component
Offset

CIDR0 CIDR1 CIDR2 CIDR3

ROM Table 0xFF0 0xFF4 0xFF8 0xFFC

CLAIMSET CLAIMCLR

RW RW

31 0

RAZ/WICLAIMCLR 0xFA4

31 0

RAZ/WICLAIMSET 0xFA0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-331
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
RAZ/WI, which corresponds to 0 claim tags being used.

CLAIMSET, bits[31:0]

RAZ/WI, which corresponds to 0 claim tags being used.

Accessing CLAIMSET-CLAIMCLR

CLAIMSET and CLAIMCLR can be accessed at the following addresses:

D3.5.4 DBGPCR<n>, Debug Power Control Registers

The DBGPCR<n> characteristics are:

Purpose

Power request version 0 supports up to 32 debug power domains, with separate registers for each
debug domain that provide controls for power requests.

The register that controls power requests for debug power domain n is DBGPCR<n>. DBGPCR<n>
is used for the following purposes:

• To indicate whether a power request mechanism is implemented for debug power domain n.

• To request power to debug power domain n.

Usage constraints

Debug power requests can be ignored in some scenarios. For details, see Debug power requests on
page D3-320.

When debug power requests are ignored, then it is IMPLEMENTATION DEFINED whether writes to
DBGPCR<n> are also ignored.

DBGPCR<n>are accessible as follows:

Configurations

Only implemented if PRIDR0.VERSION indicates it is implemented.

Attributes

Up to 32 32-bit registers.

Field Descriptions

The DBGPCR<n> bit assignments are:

Component
Offset

CLAIMSET CLAIMCLR

ROM Table 0xFA0 0xFA4

Default

RW

31 0

RES0

PR

DBGPCR<n> 0xA00 + n×4

PRESENT

12
D3-332 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Bits[31:2]

RES0.

PR, bit[1]

Power request. This field can have one of the following values:

0b0 Power is not requested for debug power domain n.

0b1 Power is requested for debug power domain n.

This field is reserved if DBGPCR<n>.PRESENT is 0b0, which indicates that power requests are not
implemented for debug power domain n.

PRESENT, bit[0]

This RO field is IMPLEMENTATION DEFINED, and indicates whether the power request for debug
power domain n is implemented. PRESENT can have one of the following values:

0b0 Power request for debug power domain n is not implemented.

0b1 Power request for debug power domain n is implemented, and therefore
DBGPCR<n>.PR and DBGPSR<n> are also implemented.

If, for a ROMENTRY<m> with a POWERIDVALID value of 0b1 and a POWERID value of n, a
read of DBGPCR<n>.PRESENT returns a value of 0b0, the mechanism to power up the debug
power domain with the ID n is IMPLEMENTATION DEFINED.

Arm recommends that debug tools do not attempt accesses to components where
ROMENTRY<m>.POWERIDVALID is 0b1 without first powering up the component using either
the DBGPCR<n> register or an IMPLEMENTATION DEFINED method.

Accessing the DBGPCR<n>

The DBGPCR<n> for debug power domain n can be accessed at the following address:

D3.5.5 DBGPSR<n>, Debug Power Status Registers

The DBGPSR<n> characteristics are:

Purpose

Power request version 0 supports up to 32 debug power domains, with separate registers for each
domain providing controls for power requests.

The register that indicates the current power status for debug power domain n is DBGPSR<n>.

Usage constraints

DBGPSR<n> are accessible as follows:

Configurations

Only implemented if DBGPCR<n>.PRESENT is 1.

Attributes

Up to 32 32-bit registers.

Component Offset

ROM Table 0xA00 + n×4

Default

RO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-333
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Field Descriptions

The DBGPSR<n> bit assignments are:

Bits[31:2]

RES0.

PS, bits[1:0]

Power status of debug power domain n. This field can have one of the following values:

0b00 Debug power domain n might not be powered.

0b01 Debug power domain n is powered.

0b10 Reserved.

0b11 Debug power domain n is powered and must remain powered until DBGPCR<n>.PR is
set to 0b0.

An implementation of the power request mechanism is not expected to be capable of indicating both
the 0b01 and 0b11 values of DBGPSR<n>.PS:

• When DBGPSR<n>.PS reads as 0b01, power is applied to debug power domain n. If
DBGPCR<n>.PR is 0b1, Arm recommends that power to debug power domain n is
continually maintained until DBGPCR<n>.PR is set to 0b0, to ensure that debug-related
programmed state is not lost during a debug session.

• When DBGPSR<n>.PS can read as 0b11, the four-phase handshake with DBGPCR<n>.PR,
shown in Figure D3-9, guarantees that debug power domain n is powered when required.

Figure D3-9 Power handshake

The steps in Figure D3-9 are:

— At T0, DBGPCR<n>.PR is written with 0b1 to request power.

— At T1, DBGPSR<n>.PS is set to 0b11 to indicate that the power request has been seen
and power has been provided and is maintained.

— At T2, DBGPCR<n>.PR is written with 0b0 to clear the power request.

— At T3, DBGPSR<n>.PS is cleared to 0b00 to acknowledge that the power request has
been removed.

Between T1 and T2, power must be supplied to power domain n, and must not be removed.

If T1 is never reached because the system cannot power up the domain, DBGPSR<n>.PS
must remain 0b00. The debugger might choose to remove the power request by writing 0b0 to
DBGPCR<n>.PR, although this practice is not recommended.

DBGPCR<n>.PR must not be used to initiate a power request when DBGPSR<n>.PS reads
as 0b11, because this value indicates that the handshake from a previous request is still
completing.

31 0

RES0DBGPSR<n> 0xA80 + n×4

PS

12

DBGPCR<n>.PR

DBGPCR<n>.PS

T0

0b00

Power is not guaranteed Powered Power is not guaranteed

0b11 0b00

T1 T2 T3
D3-334 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Accessing the DBGPSR<n>

The DBGPSR<n> for debug power domain n can be accessed at the following address:

D3.5.6 DBGRSTAR, Debug Reset Acknowledge Register

The DBGRSTAR characteristics are:

Purpose

Used to indicate that a debug reset has been completed, as an acknowledgment to a request that was
made by using DBGRSTRR.

Usage constraints

DBGRSTAR is accessible as follows:

Configurations

PRIDR0.DBGRR indicates whether this register is implemented.

Attributes

A 32-bit register.

Field Descriptions

The DBGRSTAR bit assignments are:

Bits[31:1]

RES0.

DBGRA, bit[0]

Debug Reset Acknowledge:

0b0 The debug reset request has not initiated, or has been completed in response to
DBGRSTRR.DBGRR being deasserted.

0b1 The debug reset request has been initiated.

After a power-on reset, this field is set to 0b0.

Component Offset

ROM Table 0xA80 + n×4

Default

RO

RES0

31 01

DBGRA
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-335
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Accessing DBGRSTAR

DBGRSTAR can be accessed at the following address:

D3.5.7 DBGRSTRR, Debug Reset Request Register

The DBGRSTRR characteristics are:

Purpose

DBGRSTRR is used to request a reset of debug functionality.

DBGRSTRR is used with DBGRSTAR in a handshake mechanism that indicates when a reset has
been completed.

Usage constraints PRIDR0.DBGRR indicates whether this register is implemented.

When debug reset requests are ignored, then it is IMPLEMENTATION DEFINED whether writes to
DBGRSTRR are also ignored. See Debug reset control on page D3-325.

The DBGRSTRR register is accessible as follows:

Configurations

PRIDR0.DBGRR indicates whether this register is implemented.

Attributes

A 32-bit register.

Field Descriptions

The DBGRSTRR bit assignments are:

Bits[31:1]

RES0.

DBGRR, bit[0]

Debug Reset Request:

0b0 A debug reset is not requested.

0b1 A debug reset is requested. The request remains asserted until this field is explicitly
overwritten with the value 0b0.

After a power-on reset, this field is set to 0b0.

Whether a debug reset request also resets DBGRSTRR is IMPLEMENTATION DEFINED. If
DBGRSTRR is reset by a debug reset, DBGRR is reset to 0b0, and the reset process is complete.

Setting DBGRSTRR.DBGRR to 0b0 when DBGRSTAR.DBGRA is not 0b1 results in
UNPREDICTABLE behavior, and a debug reset might or might not occur.

Component Offset

ROM Table 0xC14

Default

RW

RES0

31 01

DBGRR
D3-336 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Accessing DBGRSTRR

DBGRSTRR can be accessed at the following address:

D3.5.8 DEVAFF0-DEVAFF1, Device Affinity Registers

The DEVAFF0-DEVAFF1 characteristics are:

Purpose

Enables a debugger to determine whether two components have an affinity with each other.

Usage constraints

DEVAFF0-DEVAFF1 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers. A component might have an affinity with a group of components, for example
where a single component is shared between multiple PEs. DEVAFF0-DEVAFF1 can be used to
indicate the affinity with a group of components. See the relevant Arm® Architecture Reference
Manual for examples of how affinity with groups of PEs is indicated. However, indicating affinity
with one component or group of components is optional. When affinity is not indicated, these fields
are RAZ.

Field Descriptions

The DEVAFF0-DEVAFF1 bit assignments are:

DEVAFF0, bits[31:0]
DEVAFF1, bits[31:0]

IMPLEMENTATION DEFINED.

Component Offset

ROM Table 0xC10

Default

RO

31 0

IMPLEMENTATION DEFINEDDEVAFF1 0xFAC

31 0

IMPLEMENTATION DEFINEDDEVAFF0 0xFA8
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-337
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Accessing DEVAFF0-DEVAFF1

DEVAFF0-DEVAFF1 can be accessed at the following addresses:

D3.5.9 DEVARCH, Device Architecture Register

The DEVARCH characteristics are:

Purpose

Identifies the architect and architecture of a CoreSight component.

Usage constraints

DEVARCH is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVARCH bit assignments are:

ARCHITECT, bits[31:21]

0x23B Arm.

PRESENT, bit[20]

0b1 Present.

REVISION, bits[19:16]

0x0 Revision 0.

ARCHID, bits[15:0]

0x0AF7 ROM Table v0. If this value of ARCHID is found, the debug tool must inspect
DEVTYPE and DEVID to determine further information about the ROM Table.

Component
Offset

DEVAFF0 DEVAFF1

ROM Table 0xFA8 0xFAC

Default

RO

PRESENT

31 0

ARCHIDARCHITECT 1 REVISION

21 20 19 16 15
D3-338 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Accessing DEVARCH

DEVARCH can be accessed at the following address:

D3.5.10 DEVID, Device Configuration Register

The DEVID characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

DEVID is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVID bit assignments are:

Bits[31:7]

RES0.

CP[6]

0b0 COM Port functionality is not present. Offset range 0xD00-0xD7C is RES0.

0b1 COM Port functionality is present. Offset range 0xD00-0xD7C contain COM Port
functionality. Offset 0xD00 indicates the COM Port programmers’ model.

PRR, bit[5]

Power Request functionality included. This field can have one of the following values:

0b0 Power Request functionality not included.

If any ROM Table entries contain power domain IDs, a GPR must be present, and
pointed to by the ROM Table. The GPR provides functionality to control the power
domains.

PRIDR0 is not implemented.

0b1 Power Request functionality included.

Component Offset

ROM Table 0xFBC

Default

RO

31 0

RES0 FORMAT

PRR
SYSMEM

3456

CP

7

ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-339
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
If any ROM Table entries contain power domain IDs, they are controlled by the Power
Request functionality in the ROM Table.

PRIDR0 is implemented.

See also PRIDR0, Power Request ID Register 0 on page D3-346.

SYSMEM, bit[4]

System memory present. Indicates whether system memory is present on the bus that connects to
the ROM Table. The possible values are:

0b0 System memory not present on bus. This value indicates that the bus is a dedicated
debug bus.

0b1 System memory is also present on this bus.

Use of SYSMEM by software is deprecated, and debuggers should ignore the value of this field.

Setting SYSMEM to 0b1 is deprecated, and SYSMEM is permitted to have the value 0b0 in systems
where there are other valid addresses in the memory system.

MEMTYPE.SYSMEM indicates the memory accesses that can be performed:

When SYSMEM is 0b0

The ROM Table indicates all the valid addresses in the memory system, and the result
of accessing any other address is UNPREDICTABLE. For more information, see The
component address on page D1-293.

When SYSMEM is 0b1

There might be other valid addresses in the memory system. The result of accessing
these addresses is IMPLEMENTATION DEFINED, and:

• The ADI specification does not include any mechanism that can be used to
discover what addresses it can access, other than the addresses that are listed in
the ROM Table.

• If accesses are performed to addresses that are not in the ROM Table, there can
be side effects on the system.

FORMAT, bits[3:0]

ROM format. This field can have one of the following values:

0x0 32-bit format 0.

0x1 64-bit format 1.

Values 0x2-0xF are reserved.

Accessing DEVID

DEVID can be accessed at the following address:

D3.5.11 DEVID1-DEVID2, Device Configuration Registers

The DEVID1-DEVID2 characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

Component Offset

ROM Table 0xFC8
D3-340 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
DEVID1-DEVID2 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Two 32-bit registers.

Field Descriptions

The DEVID1-DEVID2 bit assignments are:

DEVID1, bits[31:0]
DEVID2, bits[31:0]

RES0.

Accessing DEVID1-DEVID2

DEVID1-DEVID2 can be accessed at the following addresses:

D3.5.12 DEVTYPE, Device Type Register

The DEVTYPE characteristics are:

Purpose

A debugger can use DEVTYPE to obtain information about a component that has an unrecognized
Part number.

Usage constraints

DEVTYPE is accessible as follows:

Configurations

Default

RO

Component
Offset

DEVID1 DEVID2

ROM Table 0xFC4 0xFC0

31 0

RES0DEVID1 0xFC4

31 0

RES0DEVID2 0xFC0

Default

RO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-341
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The DEVTYPE bit assignments are:

Bits[31:8]

RES0.

SUB, bits[7:4]

0x0 Other, undefined.

MAJOR, bits[3:0]

0x0 Miscellaneous.

Accessing DEVTYPE

DEVTYPE can be accessed at the following address:

D3.5.13 ITCTRL, Integration Mode Control Register

The ITCTRL characteristics are:

Purpose

A component can use ITCTRL to dynamically switch between functional mode and integration
mode.

For a Class 0x9 ROM Table, this mechanism is not implemented.

Usage constraints

ITCTRL is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Component Offset

ROM Table 0xFCC

31 0

MAJORRES0

4 3

SUB

8 7

Default

RW
D3-342 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Field Descriptions

The ITCTRL bit assignments are:

Bits[31:1]

RES0.

IME, bit[0]

RES0, which indicates that no integration functionality is implemented.

Accessing ITCTRL

ITCTRL can be accessed at the following address:

D3.5.14 LAR and LSR, Software Lock Access Register and Software Lock Status Register

The LAR and LSR characteristics are:

Purpose

The Software lock mechanism prevents accidental access to the registers of CoreSight components.

For a Class 0x9 ROM Table, the lock mechanism is not implemented.

Usage constraints

LAR and LSR are accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of 32-bit registers.

Field Descriptions

The LAR and LSR bit assignments are:

Component Offset

ROM Table 0xF00

RES0

31 01

IME

LAR LSR

WO RO

RES0

31 03 2 1

nTT
SLK
SLI

LSR 0xFB4
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-343
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
LSR, bits[31:3]

RES0.

nTT, LSR bit[2]

RAZ.

SLK, LSR bit[1]

RAZ.

SLI, LSR bit[0]

RAZ.

KEY, LAR bits[31:0]

WI.

Accessing LAR and LSR

LAR and LSR can be accessed at the following addresses:

D3.5.15 PIDR0-PIDR7, Peripheral Identification Register

This section describes the bit assignments for ROM Table components. PIDR4PIDR2

The PIDR0-PIDR7 characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

PIDR0-PIDR7 are accessible as follows:

Configurations

Included in all implementations.

Attributes Eight 32-bit management registers.

Component
Offset

LAR LSR

ROM Table 0xFB0 0xFB4

31 0

KEYLAR 0xFB0

Default

RO
D3-344 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Field Descriptions

The PIDR0-PIDR7 bit assignments are:

PIDR3 bits[31:8]

RES0.

REVAND, PIDR3 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

CMOD, PIDR3 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR2 bits[31:8]

RES0.

REVISION, PIDR2 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

JEDEC, PIDR2 bits[3]

0b1 A JEDEC value is used.

31 0

RES0

8 7

CMODREVAND

4 3

PIDR_3 0xFEC

JEDEC

31 0

RES0

8 7

DES_1REVISION

4 3

1

2

PIDR_2 0xFE8

31 0

RES0 PART_1

8 7

DES_0

4 3

PIDR_1 0xFE4

31 0

RES0 PART_0

8 7

PIDR_0 0xFE0

31 0

RES0PIDR_7 0xFDC

31 0

RES0PIDR_6 0xFD8

31 0

RES0PIDR_5 0xFD4

31 0

RES0

8 7

DES_2SIZE

4 3

PIDR_4 0xFD0
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-345
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
DES_1, PIDR2 bits[2:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR1 bits[31:8]

RES0.

DES_0, PIDR1 bits[7:4]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PART_1, PIDR1 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR0 bits[31:8]

RES0.

PART_0, PIDR0 bits[7:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

PIDR7 bits[31:0]

RES0.

PIDR6 bits[31:0]

RES0.

PIDR5 bits[31:0]

RES0.

PIDR4 bits[31:8]

RES0.

SIZE, PIDR4 bits[7:4]

0x0 A ROM Table occupies a single 4KB block of memory.

DES_2, PIDR4 bits[3:0]

See register descriptions in PIDR0-PIDR7 in Arm® CoreSight™ Architecture Specification.

Accessing PIDR0-PIDR7

PIDR0-PIDR7 can be accessed at the following address:

D3.5.16 PRIDR0, Power Request ID Register 0

The PRIDR0 characteristics are:

Purpose

Indicates the features of the power request functionality.

Usage constraints

Component
Offset

PIDR0 PIDR1 PIDR2 PIDR3 PIDR4 PIDR5 PIDR6 PIDR7

ROM Table 0xFE0 0xFE4 0xFE8 0xFEC 0xFD0 0xFD4 0xFD8 0xFDC
D3-346 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
PRIDR0 is accessible as follows:

Configurations

Only implemented if DEVID.PRR indicates it is implemented.

Attributes

PA 32-bit register.

Field Descriptions

The PRIDR0 bit assignments are:

Bits[31:6]

RES0.

SYSRR, bit[5]

Indicates whether the system reset request functionality is present. This field can have one of the
following values:

0b0 The system reset request functionality is not implemented.

0b1 The system reset request functionality, and SYSRSTRR and SYSRSTAR, which
provide status information for system resets, are implemented.

DBGRR, bit[4]

Indicates whether the debug reset request functionality is present. This field can have one of the
following values:

0b0 The debug reset request functionality is not implemented.

0b1 The system reset request functionality, and DBGRSTRR and DBGRSTAR, which
provide status information for debug resets, are implemented.

VERSION, bits[3:0]

Indicates the version of the power request functionality. This field can have one of the following
values:

0b0000 The power request functionality is not implemented.

0b0001 The power request functionality version 0, and DBGPCR<n>, DBGPSR<n>,
SYSPCR<n>, and SYSPSR<n>, which provide controls for power requests, are
implemented.

Values 0b0010-0b1111 are reserved.

Default

RO

31 0

RES0 VERSION

SYSRR
DBGRR

3456
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-347
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Accessing PRIDR0

PRIDR0 can be accessed at the following address:

D3.5.17 ROMENTRY<n>, Class 0x9 ROM Table entries

The ROMENTRY<n> characteristics are:

Purpose

A Class 0x9 ROM Table contains up to 512 ROM Table entries. Each entry that is present,
ROMENTRY<n>, describes a single component, component n.

The series of ROM Table entries starts at the base address of the Class 0x9 ROM Table:

• The first entry, entry 0, has offset 0x000.

• For a ROM table with DEVID.FORMAT == 0x0, each entry is 32 bits:

— ROMENTRY<n> has the offset 0x000 + n×4, where 0 ≤ n ≤ 511.

— If the number of components, N, is lower than the maximum supported number, 512,
the offsets of the ROM Table entries are in the following range:

— ROM Table entries representing components have offsets from 0x000 to
(N–1)×4.

— The ROMENTRY<n> at offset N×4, which has a PRESENT field with the
value 0b00, indicates the end of the ROM Table.

— If the number of components is equal to the maximum supported number, the ROM
Table entries have offsets from 0x000 to 0x7FC. If a ROM Table entry is present at offset
0x7FC, its PRESENT field must have a value of either 0b00 or 0b11, and it must be
interpreted as the final entry of the ROM Table, even if its PRESENT field has the
value 0b11.

— OFFSET[31:12] of ROMENTRY<n> is located in the 32-bit word at offset 0x000 +
(n*4)

• For a ROM table with DEVID.FORMAT == 0x1, each entry is 64 bits:

— ROMENTRY<n> has the offset 0x000 + n×8, where 0 ≤ n ≤ 255.

— If the number of components, N, is lower than the maximum supported number, 256,
the offsets of the ROM Table entries are in the following range:

— ROM Table entries representing components have offsets from 0x000 to
(N–1)×8.

— The ROMENTRY<n> at offset N×8, which has a PRESENT field with the
value 0b00, indicates the end of the ROM Table.

— If the number of components is equal to the maximum supported number, the ROM
Table entries have offsets from 0x000 to 0x7F8. If a ROM Table entry is present at offset
0x7F8, its PRESENT field must have a value of either 0b00 or 0b11, and it must be
interpreted as the final entry of the ROM Table, even if its PRESENT field has the
value 0b11.

— OFFSET[31:12] of ROMENTRY<n> is located in the 32-bit word at offset 0x000 +
(n*8)

— OFFSET[63:32] of ROMENTRY<n> is located in the 32-bit word at offset 0x000 +
(n*8) + 0x4

Usage constraints

Component Offset

ROM Table 0xC00
D3-348 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
ROMENTRY<n> registers are accessible as follows:

Configurations

Included in all implementations. For more information, see The component address on
page D1-293.

Attributes

Depend on the configuration of the CoreSight DEVID register:

• If DEVID.FORMAT has the value 0x0, the ROMENTRY<n> are 512 32-bit registers.

• If DEVID.FORMAT has the value 0x1, the ROMENTRY<n> are 256 64-bit registers.

Field Descriptions

The ROMENTRY<n> bit assignments are:

OFFSET, bits[31:12] when DEVID.FORMAT has the value 0x0
OFFSET, bits[63:12] when DEVID.FORMAT has the value 0x1

The component address, relative to the base address of this ROM Table. See The component address
on page D1-293 for full details on calculating the component address.

Note

If PRESENT are not 0b00, the OFFSET field of the ROM Table entry must not be zero. A zero
address offset points back to this ROM Table.

Bits[11:9]

RES0.

POWERID, bits[8:4]

The power domain ID of the component. This field:

• Supports up to 32 power domains using values 0x00 to 0x1F.

• Is only valid if the POWERIDVALID field, which consists of bit[2] of the same
ROMENTRY<n>, is 0b1, otherwise this field must be RES0.

Bit[3]

RES0.

POWERIDVALID, bit[2]

Indicates if the Power domain ID field contains a Power domain ID:

0b0 A power domain ID is not provided.

0b1 The POWERID field, which consists of bits[8:4] of the same ROMENTRY<n>,
provides a power domain ID.

Default

RO

31 when DEVID.FORMAT==0x0 0

OFFSET

POWERIDVALID

ROMENTRY<n>
0x000 + (n×4) when
DEVID.FORMAT==0x0

PRESENT

12

POWERIDRES0

RES0

34891112
63 when DEVID.FORMAT==0x1

0x000 + (n×8) when
DEVID.FORMAT==0x1
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-349
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
PRESENT, bits[1:0]

Indicates whether an entry is present at this location in the ROM Table. This field can have one of
the following values:

0b00 The ROM entry is not present, and this ROMENTRY<n> is the final entry in the ROM
Table. If PRESENT has this value, all other fields in this ROMENTRY<n> must be
zero.

0b01 Reserved.

0b10 The ROM entry is not present, and this ROMENTRY<n> is not the final entry in a ROM
Table with fewer than the maximum number of entries. If PRESENT has this value, all
other fields in this entry are UNKNOWN.

0b11 The ROM Entry is present.

If the number of components is equal to the maximum number of ROM Table entries, the last ROM
Table entry is not required to have a PRESENT field with the value 0b00.

Accessing the ROMENTRY<n>

The ROMENTRY<n> for component n can be accessed at the following address:

D3.5.18 SYSPCR<n>, Debug Power Control Registers

The SYSPCR<n> characteristics are:

Purpose

Power request version 0 supports up to 32 system power domains, with separate registers for each
domain providing controls for power requests.

The register that controls power requests for system power domain n is SYSPCR<n>. SYSPCR<n>
is used for the following purposes:

• To indicate whether a power request mechanism is implemented for system power domain n.

• To request power to system power domain n.

Usage constraints

System power requests might be ignored in certain scenarios. For more information, see System
power requests on page D3-323.

The SYSPCR<n> are accessible as follows:

Configurations

Only implemented if PRIDR0.VERSION indicates it is implemented.

Attributes

Up to 32 32-bit registers.

Component
Offset

DEVID.FORMAT == 0x0 DEVID.FORMAT == 0x1

ROM Table 0x000+n×4 0x000+n×8

Default

RW
D3-350 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Field Descriptions

The SYSPCR<n> bit assignments are:

Bits[31:2]

RES0.

PR, bit[1]

Power request. This field can have one of the following values:

0b0 Power is not requested for system power domain n.

0b1 Power is requested for system power domain n.

This field is reserved if power requests are not implemented for system power domain n, which is
the case if SYSPCR<n>.PRESENT has the value 0b0.

PRESENT, bit[0]

This RO field indicates whether the power request for system power domain n is implemented.
PRESENT can have one of the following values:

0b0 Power request for system power domain n is not implemented.

0b1 Power request for system power domain n is implemented, and therefore
SYSPCR<n>.PR and SYSPSR<n> are also implemented.

Accessing the SYSPCR<n>

The SYSPCR<n> for system power domain n can be accessed at the following address:

D3.5.19 SYSPSR<n>, System Power Status Registers

The SYSPSR<n> characteristics are:

Purpose

Power request version 0 supports up to 32 system power domains, with separate registers for each
domain providing controls for power requests.

The register that indicates the current power status for system power domain n is SYSPSR<n>.

Usage constraints

SYSPSR<n> registers are accessible as follows:

Configurations

Only implemented if SYSPCR<n>.PRESENT is 1.

31 0

RES0

PR

SYSPCR<n> 0xB00 + n×4

PRESENT

12

Component Offset

ROM Table 0xB00+n×4

Default

RO
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-351
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Attributes

Up to 32 32-bit registers.

Field Descriptions

The SYSPSR<n> bit assignments are:

Bits[31:2]

RES0.

PS, bits[1:0]

Power status of system power domain n. This field can have one of the following values:

0b00 System power domain n might not be powered.

0b01 System power domain n is powered.

0b10 Reserved.

0b11 System power domain n is powered and must remain powered until SYSPCR<n>.PR is
set to 0b0.

An implementation of the power request mechanism is not expected to be capable of indicating both
the 0b01 and 0b11 values of SYSPSR<n>.PS.

• When SYSPSR<n>.PS reads as 0b01, power is applied to system power domain n. If
SYSPCR<n>.PR is 0b1, Arm recommends that power to system power domain n is
continually maintained until SYSPCR<n>.PR is set to 0b0, to ensure that system-related
programmed state is not lost during a debug session.

• When SYSPSR<n>.PS can read as 0b11, the four-phase handshake with SYSPCR<n>.PR,
shown in Figure D3-10, guarantees that system power domain n is powered when required.

Figure D3-10 Power handshake

The steps in Figure D3-10 are:

— At T0, SYSPCR<n>.PR is written with 0b1 to request power.

— At T1, SYSPSR<n>.PS is set to 0b11 to indicate that the power request has been seen
and power has been provided and is maintained.

— At T2, SYSPCR<n>.PR is written with 0b0 to clear the power request.

— At T3, SYSPSR<n>.PS is cleared to 0b00 to acknowledge that the power request has
been removed.

Between T1 and T2, power must be supplied to power domain n, and must not be removed.

If T1 is never reached because the system cannot power up the domain, SYSPSR<n>.PS must
remain 0b00. The debugger might choose to remove the power request by writing 0b0 to
SYSPCR<n>.PR, although this practice is not recommended.

SYSPCR<n>.PR must not be used to initiate a power request when SYSPSR<n>.PS reads as
0b11, because this value indicates that the handshake from a previous request is still
completing.

31 0

RES0 PSSYSPSR<n> 0xB80 + n×4

12

SYSPCR<n>.PR

SYSPCR<n>.PS

T0

0b00

Power is not guaranteed Powered Power is not guaranteed

0b11 0b00

T1 T2 T3
D3-352 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Accessing the SYSPSR<n>

The SYSPSR<n> for system power domain n can be accessed at the following address:

D3.5.20 SYSRSTAR, System Reset Acknowledge Register

The SYSRSTAR characteristics are:

Purpose

Used to indicate that a system reset has been completed, as an acknowledgment to a request that was
made by using SYSRSTRR.

Usage constraints

SYSRSTAR is accessible as follows:

Configurations

PRIDR0.SYSRR indicates whether this register is implemented.

Attributes

A 32-bit register.

Field Descriptions

The SYSRSTAR bit assignments are:

Bits[31:1]

RES0.

SYSRA, bit[0]

System Reset Acknowledge:

0b0 The system reset request has not initiated, or has been completed in response to
SYSRSTRR.SYSRR being deasserted.

0b1 The system reset request has been initiated.

After a power-on reset, this field is set to 0b0.

Component Offset

ROM Table 0xB80+n×4

Default

RO

RES0

31 01

SYSRA
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-353
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
Accessing SYSRSTAR

SYSRSTAR can be accessed at the following address:

D3.5.21 SYSRSTRR, System Reset Request Register

The SYSRSTRR characteristics are:

Purpose

SYSRSTRR is used to request a reset of the entire system or subsystem. The scope of this reset is
IMPLEMENTATION DEFINED.

SYSRSTRR is used with SYSRSTAR in a handshake mechanism that indicates when a reset has
been completed.

Usage constraints

System reset requests can be ignored in certain scenarios. See System reset control on page D3-326.

When system reset requests are ignored, then it is IMPLEMENTATION DEFINED whether writes to
SYSRSTRR are also ignored.

SYSRSTRR is accessible as follows:

Configurations

PRIDR0.SYSRR indicates whether this register is implemented.

Attributes

A 32-bit register.

Field Descriptions

The SYSRSTRR bit assignments are:

Bits[31:1]

RES0.

SYSRR, bit[0]

System Reset Request:

0b0 A system reset is not requested.

Component Offset

ROM Table 0xC1C

Default

RW

RES0

31 01

SYSRR
D3-354 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
0b1 A system reset is requested. The request remains asserted until this field is explicitly
overwritten with the value 0b0.

After a power-on reset, this field is set to 0b0.

Accessing SYSRSTRR

SYSRSTRR can be accessed at the following address:

Component Offset

ROM Table 0xC18
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. D3-355
ID072524 Non-Confidential

D3 Class 0x9 ROM Tables
D3.5 Register descriptions
D3-356 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Part E
Appendixes

Appendix E1
Standard Memory Access Port Definitions

This appendix provides information on implementing the Memory Access Port (MEM-AP). It contains the
following sections:

• Introduction on page E1-360.

• AMBA AXI3 and AXI4 on page E1-361.

• AMBA AXI4 with ACE-Lite on page E1-363.

• AMBA AXI5 on page E1-366.

• AMBA AHB3 on page E1-370.

• AMBA AHB5 on page E1-373.

• AMBA AHB5 with enhanced HPROT control on page E1-375.

• AMBA APB2 and APB3 on page E1-377.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-359
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.1 Introduction
E1.1 Introduction

The Memory Access Port (MEM-AP) programmers’ model includes IMPLEMENTATION DEFINED features. This
appendix provides reference implementation options for implementers and users of MEM-APs when connecting to
standard memory interfaces. In particular, it provides the recommended interpretations of the following fields:

• CSW.Prot.

• CSW.SDeviceEn.

Note

CSW.SDeviceEn uses the same position as CSW.SPIDEN in ADIv5 and before, and has the same meaning.
The field name is changed from SPIDEN to SDeviceEn to avoid confusing the field with the SPIDEN signal
on the authentication interface.

• CSW.Type.

• CSW.AddrInc.

• CSW.Size.
E1-360 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.2 AMBA AXI3 and AXI4
E1.2 AMBA AXI3 and AXI4

This section describes the implementation of the CSW register for AMBA AXI3 and AXI4 implementations. For
more information, see AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE and
ACE-Lite™.

E1.2.1 CSW register implementation

DbgSwEnable, bit[31]

See CSW, Control/Status Word register on page C2-216.

Prot, bits[30:24]

For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

The settings for the CSW.Prot field are:

PROT[2:0], bits[30:28]

Drives AxPROT[2:0], where x is R for reads and W for writes, see Table E1-1.

CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior
depends on the vale of CSW.SDeviceEn. For values in CSW.Prot[29]:

0b1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is
HIGH.

0b0 Secure transfer requested. If CSW.SDeviceEn is 0b1, ARPROT[1]
or AWPROT[1] is LOW. If CSW.SDeviceEn is 0b0, no transfer is
initiated, and Arm recommends that an error response is returned to
the DP if an access is made to the DRW or Banked Data registers.

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SDeviceEn

15161718

PROT CACHE RES0 Type Mode SIZE

Prot
DbgSwEnable

ERRNPASS
ERRSTOP

RES0

28 27 2

Table E1-1 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-361
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.2 AMBA AXI3 and AXI4
CACHE[3:0], bits[27:24]

Drives AxCACHE[3:0], where x is R for reads and W for writes, see
Table E1-2.

Note
AMBA AXI4 requires asymmetrical usage of ARCACHE and AWCACHE.

The reset value of CSW.Prot is 0b0110000.

SDeviceEn, bit[23]

The CSW.SDeviceEn bit reflects the state of the CoreSight authentication signal, SPIDEN.

Bits[22:18]

RES0.

ERRSTOP, bit[17]

See CSW, Control/Status Word register on page C2-216.

ERRNPASS, bit[16]

See CSW, Control/Status Word register on page C2-216.

Type, bits[15:12]

RES0.

Mode, bits[11:8]

RES0.

TrInProg, bit[7]

See CSW, Control/Status Word register on page C2-216.

DeviceEn, bit[6]

See CSW, Control/Status Word register on page C2-216.

AddrInc, bits[5:4]

CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on
page C2-187.

Bit[3]

RES0.

Size, bits[2:0]

CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION
DEFINED whether larger access sizes are supported.

Table E1-2 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
E1-362 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.3 AMBA AXI4 with ACE-Lite
E1.3 AMBA AXI4 with ACE-Lite

This section describes the register implementation for AMBA AXI4 implementations with ACE-Lite. For more
information, see the AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE and
ACE-Lite™.

The following registers are covered:

• CSW register implementation.

• MBT register implementation on page E1-365.

E1.3.1 CSW register implementation

DbgSwEnable, bit[31]

See CSW, Control/Status Word register on page C2-216.

Prot, bits[30:24]

For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

The settings for the CSW.Prot field are:

PROT[2:0], bits[30:28]

Drives AxPROT[2:0], where x is R for reads and W for writes, see Table E1-3.

CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior
depends on the value of CSW.SDeviceEn. For values in CSW.Prot[29]:

0b1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is
HIGH.

0b0 Secure transfer requested. If CSW.SDeviceEn is 0b1, ARPROT[1]
or AWPROT[1] is LOW. If CSW.SDeviceEn is 0b0, no transfer is
initiated, and Arm recommends that an error response is returned to
the DP if an access is made to the DRW or Banked Data registers.

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SDeviceEn

15161718

PROT CACHE RES0 Type Mode SIZE

Prot
DbgSwEnable

ERRNPASS
ERRSTOP

RES0

28 27 2

Table E1-3 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-363
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.3 AMBA AXI4 with ACE-Lite
CACHE[3:0], bits[27:24]

Drives AxCACHE[3:0], where x is R for reads and W for writes, see
Table E1-4.

Note
AMBA AXI4 requires asymmetrical usage of ARCACHE and AWCACHE.

The reset value of CSW.Prot is 0b0110000.

SDeviceEn, bit[23]

The CSW.SDeviceEn bit reflects the state of the CoreSight authentication signal, SPIDEN.

Bits[22:18]

RES0.

ERRSTOP, bit[17]

See CSW, Control/Status Word register on page C2-216.

ERRNPASS, bit[16]

See CSW, Control/Status Word register on page C2-216.

Type, bits[15:12]

The CSW.Type field drives the AXI AxDOMAIN signals, where x is R for reads and W for
writes.

The settings for the CSW.Type bit field are:

bit[15] Reserved, RES0.

DOMAIN[1:0], bits[14:13]

Possible values are:

0b00 Non-shareable.

0b01 Inner shareable.

0b10 Outer shareable.

0b11 System.

The reset value of this field is 0b11.

EnMBT, bit[12]

Enable MBT accesses.

It is IMPLEMENTATION DEFINED whether this field is RW or RAO. If it is RW,
the reset value is 0b0, and must be set to 0b1 before writing to the MBT register.

Mode, bits[11:8]

It is IMPLEMENTATION DEFINED whether this field is RW or RO. If it is RW, the reset value
is 0b0000, and must be set to 0b0001 before writing to the MBT register. If it is RO, then it
has the fixed value 0b0001.

Table E1-4 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
E1-364 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.3 AMBA AXI4 with ACE-Lite
TrInProg, bit[7]

See CSW, Control/Status Word register on page C2-216.

DeviceEn, bit[6]

See CSW, Control/Status Word register on page C2-216.

AddrInc, bits[5:4]

CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on
page C2-187.

Bit[3]

RES0.

Size, bits[2:0]

CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION
DEFINED whether larger access sizes are supported.

E1.3.2 MBT register implementation

Attributes

MBT register is a read/write register.

Bits[31:3]

Reserved, RES0.

BarTran, bits[2:1]

Possible values are:

0b00 Reserved

0b01 Memory barrier

0b10 Reserved

0b11 Synchronization barrier.

Bit[0]

On reads:

0b0 Barrier transaction in progress.

0b1 No barrier transaction in progress.

SBO on writes.

31 0

RES0

BarTran
Bit [0]

123
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-365
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.4 AMBA AXI5
E1.4 AMBA AXI5

This section describes the register implementation for AMBA AXI5 implementations. For more information, see
the AMBA® AXI™ and ACE™ Protocol Specification AXI5 and AXI5-Lite.

The following registers are covered:

• CSW register implementation on page E1-363.

Support for the Memory Tagging Extension in an AXI5 MEM-AP is optional. When the Memory Tagging
Extension is implemented:

• The MEM-AP implements the Large Data Extension, supporting access sizes of up to at least 64-bits.

• The MEM-AP implements the Memory Tagging Extension, supporting 4-bit tags with a 16-byte memory
tagging granule.

When memory tagging is enabled, the data size selected by CSW.SIZE must be one of:

• 64-bits.

• An integer multiple of 128-bits.

Note

This specification permits a MEM-AP with memory tagging to only support data value sizes up to 64 bits. However
AXI5 does require a bus width of 128-bit and any AXI-AP design needs to ensure it implements the requirements
of both specifications.

System memory read accesses with memory tagging enabled perform AXI Transfer tag operations on ARTAGOP.

System memory write accesses with memory tagging enabled perform AXI Update tag operations on AWTAGOP.

Note

AXI-AP has no need for the Transfer or Match tag operations on AWTAGOP.

When a 64-bit system memory read access is initiated, the AXI-AP performs a read transaction of at least 128-bits,
and discards the unused data bytes.

When a 64-bit system memory write access is initiated, the AXI-AP performs a write transaction of at least 128-bits,
and drives the write strobes appropriately to ensure only the correct 64-bits of data are transferred.

When the Realm Management Extension is implemented, CSW.NSE is present and is used with CSW.PROT[1] to
select the physical address (PA) space of the memory access.

CSW.NSE and CSW.PROT[1] define the PA space of the memory access. Table E1-5 and Table E1-6 on
page E1-367 illustrate the PA space definitions of PA space memory access.

Table E1-5 AXI-AP PA space selection, when Realm Management Extension is not implemented

CSW.PROT[1] Selected PA space

0b0 Secure

0b1 Non-secure
E1-366 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.4 AMBA AXI5
If CSW.NSE and CSW.PROT[1] select a PA space for a location where a memory access is not permitted, no
memory access is performed.

Note

The NSE and PROT values in Table E1-6 mean that a legacy (before Realm Management Extension) debugger
attempting to access memory allocated to EL3 in a Realm Management Extension-enabled system will not access
the Root PA space but instead will access Secure memory.

Support for the Memory Encryption Contexts extension (MEC Extension) in an AXI5 MEM-AP is
IMPLEMENTATION DEFINED, even in systems that support FEAT_MEC. Arm recommends that a MEM-AP supports
the MEC Extension if it is connected to a memory system that supports FEAT_MEC.

E1.4.1 CSW register implementation

DbgSwEnable, bit[31]

See CSW, Control/Status Word register on page C2-216.

Prot, bits[30:24]

For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

The settings for the CSW.Prot field are:

PROT[2:0], bits[30:28]

Drives AxPROT[2:0], where x is R for reads and W for writes, see Table E1-3
on page E1-363.

Table E1-6 AXI-AP PA space selection, when Realm Management Extension is implemented

CSW.NSE CSW.PROT[1] Selected PA space

0b0 0b0 Secure

0b0 0b1 Non-secure

0b1 0b0 Root

0b1 0b1 Realm

31 30 24 23 22 12 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SDeviceEn

15161718

PROT Cache RES0 Mode Size

Prot
DbgSwEnable

ERRNPASS
ERRSTOP

RES0

28 27 214

MTE

21 20

RMEEN

13

Domain

11

NSE

Table E1-7 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-367
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.4 AMBA AXI5
CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior
depends on the value of CSW.SDeviceEn. For values in CSW.Prot[29]:

0b1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is
HIGH.

0b0 Secure transfer requested. If CSW.SDeviceEn is 0b1, ARPROT[1]
or AWPROT[1] is LOW. If CSW.SDeviceEn is 0b0, no transfer is
initiated, and Arm recommends that an error response is returned to
the DP if an access is made to the DRW or Banked Data registers.

CACHE[3:0], bits[27:24]

Drives AxCACHE[3:0], where x is R for reads and W for writes, see
Table E1-4 on page E1-364.

Note
AMBA AXI5 requires asymmetrical usage of ARCACHE and AWCACHE.

The reset value of CSW.Prot is 0b0110000.

SDeviceEn, bit[23]

The CSW.SDeviceEn bit reflects the state of the CoreSight authentication signal, SPIDEN.

RMEEN, bits [22:21]

Realm and Root access status.

When CFG.RME == 0b1

The defined values of this field are:

0b00 Realm and Root accesses are disabled

0b01 Realm access is enabled. Root access is disabled.

0b11 Realm access is enabled. Root access is enabled.

Otherwise

Reserved. This field is RES0.

All other values are reserved.

This field is read-only.

Bits[20:18]

RES0.

ERRSTOP, bit[17]

See CSW, Control/Status Word register on page C2-216.

ERRNPASS, bit[16]

See CSW, Control/Status Word register on page C2-216.

MTE, bit[15]

Table E1-8 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
E1-368 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.4 AMBA AXI5
Memory Tagging control. The possible values of this bit are:

0b0 Memory tagging accesses disabled.

0b1 Memory tagging accesses enabled.

When memory tagging accesses are enabled, system read and write accesses via DRW,
BDx, and DARx, use T0TR for transferring tag information.

When the Memory Tagging Extension is not implemented, this field is RES0.

Domain, bits[14:13]

The CSW.Type field drives the AXI AxDOMAIN signals, where x is R for reads and W for
writes.

The settings for the CSW.Type bit field are:

DOMAIN[1:0], bits[14:13]

Possible values are:

0b00 Non-shareable.

0b01 Inner shareable.

0b10 Outer shareable.

0b11 System.

The reset value of this field is 0b11.

NSE, bit[12]

AxNSE value.

When CFG.RME == 0b1

Defines the PA space used for each memory access. Used in conjunction with
PROT[1]. See AMBA AXI5 on page E1-366.

Otherwise

Reserved. This field is RES0.

Bits[11:8]

RES0.

TrInProg, bit[7]

See CSW, Control/Status Word register on page C2-216.

DeviceEn, bit[6]

See CSW, Control/Status Word register on page C2-216.

AddrInc, bits[5:4]

CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on
page C2-187.

Bit[3]

RES0.

Size, bits[2:0]

CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION
DEFINED whether larger access sizes are supported.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-369
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.5 AMBA AHB3
E1.5 AMBA AHB3

This section describes the implementation of the CSW register for AMBA AHB3 implementations. For more
information, see the AMBA® Specification (Rev 2.0) and the AMBA® 3 AHB-Lite™ Protocol Specification.

E1.5.1 CSW register implementation

DbgSwEnable, bit[31]

See CSW, Control/Status Word register on page C2-216.

Prot, bits[30:24]

The CSW.Prot field drives the AHB HPROT signals. The settings for the CSW.Prot field
are:

HNONSEC, bit[30]

Drives the value of an IMPLEMENTATION DEFINED HNONSEC
signal.

HNONSEC is not a formally defined AHB3 signal.

If implemented, the reset value of this field is 0b1.

If not implemented, this field is SBO, and if set to 0b0 the behavior
of an AHB-AP transaction is UNPREDICTABLE.

MasterType, bit[29]

Master Type bit. MasterType permits the AHB-AP to mimic a
second AHB Requester by driving a different value on
HMASTER[3:0]. Support for this function is IMPLEMENTATION
DEFINED. Valid values for this bit are:

0b1 Drive HMASTER[3:0] with the bus transaction
Requester ID for the AHB-AP.

0b0 Drive HMASTER[3:0] with the bus transaction
Requester ID for the second bus transaction Requester.

HPROT[4], Allocate, bit[28]

Drives HPROT[4], Allocate. HPROT[4] is an Armv5 extension to
AHB. For more information, see the Arm1136JF-S™ and
Arm1136J-S™ Technical Reference Manual.

If the AHB Requester interface does not support the Armv5
extension to AHB, this bit is RAZ/WI.

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SDeviceEn

1615

HPROT[3:0] RES0 Type Mode Size

29 28 27 1718

ERRNPASS
ERRSTOP

MasterType
HNONSEC
DbgSwEnable

2

HPROT[4], Allocate
E1-370 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.5 AMBA AHB3
HPROT[3:0], bits[27:24]

Drives HPROT[3:0]. See Table E1-9 on page E1-359. Support for
each HPROT signal in the AHB Requester interface is
IMPLEMENTATION DEFINED.

The reset value of CSW.Prot is 0b1000011.

SDeviceEn, bit[23]

It is IMPLEMENTATION DEFINED whether the CSW.SDeviceEn bit reflects the state of the
CoreSight authentication signal, SPIDEN. Otherwise, the CSW.SDeviceEn bit is RAZ.

This bit is always read-only.

Note

AMBA AHB3 does not support Security Extensions.

Bits[22:18]

RES0.

ERRSTOP, bit[17]

See CSW, Control/Status Word register on page C2-216.

ERRNPASS, bit[16]

See CSW, Control/Status Word register on page C2-216.

Type, bits[15:12]

RES0.

Mode, bits[11:8]

RES0.

TrInProg, bit[7]

See CSW, Control/Status Word register on page C2-216.

DeviceEn, bit[6]

See CSW, Control/Status Word register on page C2-216.

AddrInc, bits[5:4]

Support for the Increment Packed mode of transfer is IMPLEMENTATION DEFINED. See
Packed transfers on page C2-187.

Bit[3]

RES0.

Size, bits[2:0]

Table E1-9 CSW.Prot mapping

Bit HPROT signal Description
Description when not implemented
at the AHB Requester interface

27 HPROT[3] Cacheable RAZ/WI

26 HPROT[2] Bufferable RAZ/WI

25 HPROT[1] Privileged RAO/WI

24 HPROT[0] Data RAO/WI
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-371
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.5 AMBA AHB3
CSW.Size must support word, half-word, and byte size accesses.
E1-372 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.6 AMBA AHB5
E1.6 AMBA AHB5

This section describes the implementation of the CSW register for AMBA AHB implementations. For more
information, see the AMBA® Specification (Rev 2.0) and the Arm® AMBA® 5 AHB Protocol Specification.

The AHB-AP does not support the Realm Management Extension.

E1.6.1 CSW register implementation

DbgSwEnable, bit[31]

See CSW, Control/Status Word register on page C2-216.

HNONSEC, Bit[30]

Drives the value of HNONSEC. It is IMPLEMENTATION DEFINED whether the HNONSEC
field is supported.

If implemented, the reset value of this field is 0b1.

MasterType, bit[29]

Master Type field. MasterType permits the AHB-AP to mimic a second AHB Requester by
driving a different value on HMASTER[3:0]. Support for this function is IMPLEMENTATION
DEFINED. Valid values for this field are:

0b1 Drive HMASTER[3:0] with the bus transaction Requester ID for the AHB-AP.

0b0 Drive HMASTER[3:0] with the bus transaction Requester ID for the second
bus transaction Requester.

If this function is not implemented, the field is RES0.

Bit[28]

RES0.

HPROT, bits[27:24]

Drives the value of HPROT[6:0]:

• Support for each HPROT signal is IMPLEMENTATION DEFINED.

• HPROT[5] is always driven with the value 0.

• Bit[27] drives HPROT[6], HPROT[4], and HPROT[3].

• Bit[26] drives HPROT[2].

• Bit[25] drives HPROT[1].

• Bit[24] drives HPROT[0].

SDeviceEn, bit[23]

It is IMPLEMENTATION DEFINED whether the SDeviceEn field reflects the state of the
CoreSight authentication interface. If Secure debug is not supported, the CSW.SDeviceEn
bit is RES0.

This field is always read-only.

Bits[22:18]

RES0.

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SDeviceEnRES0

1615

HPROT RES0 Type Mode Size

29 28 27 1718

ERRNPASS
ERRSTOPMasterType

HNONSEC
DbgSwEnable

2

ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-373
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.6 AMBA AHB5
ERRSTOP, bit[17]

See CSW, Control/Status Word register on page C2-216.

ERRNPASS, bit[16]

See CSW, Control/Status Word register on page C2-216.

Type, bits[15:12]

RES0.

Mode, bits[11:8]

RES0.

TrInProg, bit[7]

See CSW, Control/Status Word register on page C2-216.

DeviceEn, bit[6]

See CSW, Control/Status Word register on page C2-216.

AddrInc, bits[5:4]

Support for the Increment Packed mode of transfer is IMPLEMENTATION DEFINED. See
Packed transfers on page C2-187.

Bit[3]

RES0.

Size, bits[2:0]

CSW.Size must support word, half-word, and byte size accesses.
E1-374 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.7 AMBA AHB5 with enhanced HPROT control
E1.7 AMBA AHB5 with enhanced HPROT control

This section describes the implementation of the CSW register for AMBA AHB with enhanced HPROT control
implementations. For more information, see the AMBA® Specification (Rev 2.0) and the Arm® AMBA® 5 AHB
Protocol Specification.

E1.7.1 CSW register implementation

DbgSwEnable, bit[31]

See CSW, Control/Status Word register on page C2-216.

HNONSEC, bit[30]

Drives the value of HNONSEC. It is IMPLEMENTATION DEFINED whether the HNONSEC
field is supported.

If implemented, the reset value of this field is 0b1.

MasterType, bit[29]

Master Type field. MasterType permits the AHB-AP to mimic a second AHB Requester by
driving a different value on HMASTER[3:0]. Support for this function is IMPLEMENTATION
DEFINED. Valid values for this field are:

0b1 Drive HMASTER[3:0] with the bus Requester ID for the AHB-AP.

0b0 Drive HMASTER[3:0] with the bus Requester ID for the second bus
Requester.

If this function is not implemented, the field is RES0.

HPROT, bits[28:24, 15]

Bits[28:24] drive the value of HPROT[6:0].

• Support for each HPROT signal is IMPLEMENTATION DEFINED.

• Bit[15] drives HPROT[6].

• HPROT[5] is always driven with the value 0.

• Bits[28:24] drive HPROT[4:0].

SDeviceEn, bit[23]

It is IMPLEMENTATION DEFINED whether the SDeviceEn field reflects the state of the
CoreSight authentication interface. If Secure debug is not supported, the CSW.SDeviceEn
bit is RES0.

This field is always read-only.

Bits[22:18]

RES0.

ERRSTOP, bit[17]

See CSW, Control/Status Word register on page C2-216.

ERRNPASS, bit[16]

See CSW, Control/Status Word register on page C2-216.

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SDeviceEn

1615

HPROT RES0 Type Mode Size

29 28 1718

ERRNPASS
ERRSTOP

MasterType
HNONSEC
DbgSwEnable

214

HPROT
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-375
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.7 AMBA AHB5 with enhanced HPROT control
HPROT, bit[15]

Used to control HPROT, see the HPROT field.

Type, bits[14:12]

RES0.

Mode, bits[11:8]

RES0.

TrInProg, bit[7]

See CSW, Control/Status Word register on page C2-216.

DeviceEn, bit[6]

See CSW, Control/Status Word register on page C2-216.

AddrInc, bits[5:4]

Support for the Increment Packed mode of transfer is IMPLEMENTATION DEFINED. See
Packed transfers on page C2-187.

Bit[3]

RES0.

Size, bits[2:0]

CSW.Size must support word, half-word, and byte size accesses.
E1-376 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.8 AMBA APB2 and APB3
E1.8 AMBA APB2 and APB3

This section describes the implementation of the CSW register for AMBA APB2 and APB3 implementations. For
more information see the AMBA® Specification (Rev 2.0), and the AMBA® Protocol Specification Version: 2.0.

E1.8.1 CSW register implementation

DbgSwEnable, bit[31]

See CSW, Control/Status Word register on page C2-216.

Prot, bits[30:24]

RES0.

SDeviceEn, bit[23]

RES0.

Bits[22:18]

RES0.

ERRSTOP, bit[17]

See CSW, Control/Status Word register on page C2-216

ERRNPASS, bit[16]

See CSW, Control/Status Word register on page C2-216

Type, bits[15:12]

RES0.

Mode, bits[11:8]

RES0.

TrInProg, bit[7]

See CSW, Control/Status Word register on page C2-216

DeviceEn, bit[6]

See CSW, Control/Status Word register on page C2-216

AddrInc, bits[5:4]

CSW.AddrInc does not support the Increment Packed mode of transfer, and reads as 0b00.
See also Packed transfers on page C2-187.

Bit[3]

RES0.

Size, bits[2:0]

CSW.Size only supports word accesses, and reads as 0b010. Writes to CSW.Size are
ignored.

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SDeviceEn

15161718

RES0 RES0 Type Mode Size

DbgSwEnable ERRNPASS
ERRSTOP

RES0

28 27 2
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-377
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.9 AMBA APB4 and APB5
E1.9 AMBA APB4 and APB5

This section describes the implementation of the CSW register for AMBA APB4 and APB5 implementations. For
more information see the AMBA® APB Protocol Specification.

When the Realm Management Extension is implemented, CSW.NSE is present and is used with CSW.PROT[1] to
select the PA space of the memory access.

CSW.NSE and CSW.PROT[1] define the PA space of the memory access. Table E1-10 and Table E1-11 on
page E1-378 illustrate the PA space definitions of PA space memory access.

If CSW.NSE and CSW.PROT[1] select a PA space for a location where a memory access is not permitted, no
memory access is performed.

Note

The NSE and PROT values in Table E1-11 mean that a legacy (before Realm Management Extension) debugger
attempting to access memory allocated to EL3 in a Realm Management Extension-enabled system will not access
the Root PA space but instead will access Secure memory.

E1.9.1 CSW register implementation

DbgSwEnable, bit[31]

See CSW, Control/Status Word register on page C2-216.

Prot[2:0], bits[30:28]

Drives PPROT[2:0].

Bit[29], Non-secure, corresponds to Prot[1], and specifies a non-secure transfer. This bit can
have one of the following values:

0b1 Non-secure transfer requested. PPROT[1] is HIGH.

Table E1-10 APB-AP PA space selection, when Realm Management Extension is not implemented

CSW.PROT[1] Selected PA space

0b0 Secure

0b1 Non-secure

Table E1-11 APB-AP PA space selection, when Realm Management Extension is implemented

CSW.NSE CSW.PROT[1] Selected PA space

0b0 0b0 Secure

0b0 0b1 Non-secure

0b1 0b0 Root

0b1 0b1 Realm

RES0RES0PROT RES0

31 30 24 23 22 12 11 8 7 6 5 4 3 2 0

RMEEN Mode Size

RES0

DeviceEn
TrInProg

SDeviceEnDbgSwEnable

16 15

AddrInc

28 27

ERRNPASS
ERRSTOP

18 172120 13

NSE
E1-378 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E1 Standard Memory Access Port Definitions
E1.9 AMBA APB4 and APB5
0b0 Secure transfer requested. The resulting behavior depends on the value of the
CSW.SDeviceEn field:

• If CSW.SDeviceEn is 0b1, PPROT[1] is LOW.

• If CSW.SDeviceEn is 0b0, no transfer is initiated, and Arm recommends
that, if an access is made to the DRW, DAR0-DAR255, or BD0-BD3
registers, an error response is returned.

Bits[27:24]

RES0.

SDeviceEn, bit[23]

It is IMPLEMENTATION DEFINED whether CSW.SDeviceEn reflects the state of the CoreSight
authentication interface. If Secure debug is not supported, CSW.SDeviceEn is RES0.

This field is always read-only.

RMEEN, bits [22:21]

Realm and Root access status.

When CFG.RME == 0b1

The defined values of this field are:

0b00 Realm and Root accesses are disabled.

0b01 Realm access is enabled. Root access is disabled.

0b11 Realm access is enabled. Root access is enabled.

Otherwise

Reserved. This field is RES0.

All other values are reserved.

This field is read-only.

Bits[20:18]

RES0.

ERRSTOP, bit[17]

See CSW, Control/Status Word register on page C2-216

ERRNPASS, bit[16]

See CSW, Control/Status Word register on page C2-216

Bits[15:13]

RES0.

NSE, bit[12]

PNSE value.

When CFG.RME == 0b1

Defines the PA space used for each memory access. Used in conjunction with
PROT[1].

Otherwise

Reserved. This field is RES0.

Mode, bits[11:8]

RES0.

TrInProg, bit[7]

See CSW, Control/Status Word register on page C2-216
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E1-379
ID072524 Non-Confidential

Appendix E1 Standard Memory Access Port Definitions
E1.9 AMBA APB4 and APB5
DeviceEn, bit[6]

See CSW, Control/Status Word register on page C2-216

AddrInc, bits[5:4]

CSW.AddrInc does not support the Increment Packed mode of transfer, and reads as 0b00.
See also Packed transfers on page C2-187.

Bit[3]

RES0.

Size, bits[2:0]

CSW.Size only supports word accesses, and reads as 0b010. Writes to CSW.Size are
ignored.
E1-380 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E2
Cross-over with the Arm Architecture

This appendix describes the required or recommended options for the Arm Debug Interface for the Armv6-M and
all Armv7, Armv8, and Armv9 architecture profiles. It contains the following sections:

• Introduction on page E2-382.

• Armv6-M, Armv7-M, and Armv8-M architecture profiles on page E2-383.

• PEs with a physical address up to 32 bits on page E2-384.

• PEs with a physical address greater than 32 bits on page E2-385.

• Summary of the requirements for ADIv6 implementations on page E2-386.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E2-381
ID072524 Non-Confidential

Appendix E2 Cross-over with the Arm Architecture
E2.1 Introduction
E2.1 Introduction

The Arm Debug Interface v6 is the recommended external debug interface for Armv6-M, all Armv7, all Armv8,
and Armv9 architecture profiles.

When designing with Arm Cortex™ processor cores and Arm CoreSight technology, the choice of Arm Debug
Interface (ADI) features might be at the discretion of the system designer. Arm recommends that system designers
choose an ADI that implements all the recommended features for each Arm architecture processing element (PE)
that is contained in the design.

ADIv6 might also be used with other architecture variants. For example, an ADIv6 JTAG Access Port (JTAG-AP)
might access a Debug Test Access Port (DBGTAP), as defined by Arm Debug Interface v4 (ADIv4) for Armv6
architecture processors.
E2-382 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E2 Cross-over with the Arm Architecture
E2.2 Armv6-M, Armv7-M, and Armv8-M architecture profiles
E2.2 Armv6-M, Armv7-M, and Armv8-M architecture profiles

Arm recommends that an ADI that implements ADIv5 or later is used to access the debug features of the Armv6-M,
Armv7-M, or Armv8-M architecture.

Arm recommends that the DP implements the SWD interface, either through an SW-DP or SWJ-DP. A JTAG-DP
is permitted.

When accessing debug features of the Armv6-M architecture, or the Armv8-M architecture without the Main
Extension, Arm recommends that the DP implements the MINDP model. See MINDP, Minimal DP extension on
page B1-42.

There must be one MEM-AP for each PE, which complies with the following rules:

• The MEM-AP must be able to address the complete memory space visible to the PE, including all debug
peripherals and the NVIC.

• The MEM-AP must support byte, half-word, and word size accesses to memory.

• A MEM-AP that is used to access debug features of the Armv6-M architecture, or the Armv8-M architecture
without the Main Extension, is not required to support the packed increment transfer mode.

• A MEM-AP that is used to access debug features of the Armv7-M architecture, or the Armv8-M architecture
with the Main Extension, is permitted to support the packed increment transfer mode.

Other APs can be connected to the DP.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E2-383
ID072524 Non-Confidential

Appendix E2 Cross-over with the Arm Architecture
E2.3 PEs with a physical address up to 32 bits
E2.3 PEs with a physical address up to 32 bits

The Armv7-A without the Large Physical Address Extension, Armv7-R, and Armv8-R AArch32 architecture
profiles do not require compliance with ADIv5 or later. The Arm development tools, however, do require
compliance with ADIv5 or later.

Where an ADI implementation that is compliant with ADIv5 or later is implemented, Arm recommends that the DP
implements the JTAG and SWD interfaces through an SWJ-DP.

Many PEs can be connected to a single MEM-AP. The MEM-AP must only be able to address the debug peripherals
of the connected PEs. If the MEM-AP can only address the debug peripherals, it is only required to support word
size accesses to memory, and therefore is not required to support the packed increment transfer mode.

Arm recommends that debug implementations include a MEM-AP that can address the complete memory space
visible to the PE or PEs. This MEM-AP might be a second MEM-AP that is connected to the DP. Arm recommends
that a MEM-AP that can access the complete memory space supports byte, half-word, and word size accesses to
memory. This MEM-AP is permitted to support the packed increment transfer mode.

Other APs can also be connected to the DP.

Note

Do not confuse the Armv7-A or Armv8-A Large Physical Address Extension with the MEM-AP Large Physical
Address Extension.
E2-384 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E2 Cross-over with the Arm Architecture
E2.4 PEs with a physical address greater than 32 bits
E2.4 PEs with a physical address greater than 32 bits

The requirements for Armv7-A with Large Physical Address Extension, Armv8-A, Armv8-R AArch64, and
Armv9-A architecture profiles are the same as for PEs with a physical address up to 32 bits on page E2-384, with
the following additions for any MEM-AP with system access:

• MEM-AP Large Physical Address Extension, up to at least the size that is supported by the PE.

• For Armv7-A systems with the Large Physical Address Extension, Arm recommends that the MEM-AP
implements the Large Data Extension providing at least doubleword accesses, to allow for atomic update of
page table entries.

• For Armv8-A and Armv9-A systems, the MEM-AP must implement the Large Data Extension providing at
least doubleword accesses.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E2-385
ID072524 Non-Confidential

Appendix E2 Cross-over with the Arm Architecture
E2.5 Summary of the requirements for ADIv6 implementations
E2.5 Summary of the requirements for ADIv6 implementations

Table E2-1 summarizes the required and recommended components of an ADI implementation for each of the Arm
architecture variants for which ADIv6 is the required or recommended ADI.

Table E2-1 Recommended ADI implementations for Arm Architecture variants

Component

Armv6-M
and
Armv8-M
without
Main
Extension

Armv7-M
and
Armv8-M
with Main
Extension

PEs with a
physical
address up
to 32 bits

PEs with a
physical
address
greater than
32 bits

DAP ADIv5 or later Required Required Recommended Recommended

DP JTAG-DP Permitted Permitted Permitted Permitted

SW-DP - - Permitted Permitted

SWJ-DP - - Recommended Recommended

SWJ-DP or SW-DP Recommended Recommended - -

MEM-AP One per PE Required Required Permitted Permitted

Access to system memory Required Required Permitted Permitted

Support for 8-bit and 16-bit accesses Required Required Required only
if system
access is
supported

Required only
if system
access is
supported

Support for 32-bit accesses Required Required Required Required

Support for 64-bit accesses Permitted Permitted Permitted Required

Support for large physical addresses Not permitted Not permitted Permitted Required if
system access
is supported

Support for packed increment transfers Permitted Permitted Permitted Permitted

Support for the Memory Tagging
Extension

Not permitted Not permitted Permitted Required if
system access
is supported
and system
supports
memory
tagging.
E2-386 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Appendix E3
Revisions

This appendix lists the technical changes between releases of this specification.

Table E3-1 First release of Version 6.0, Issue A

Location Change

- -

Table E3-2 Changes between Issues A and B

Location Change

Chapter D3 Class 0x9 ROM Tables. Additions to the Class 0x9 ROM table.

System and debug power control behavior
on page B2-82.

Relaxed requirements for clocks to be running while
CxxxPWRUPREQ is asserted, to require clocks to
be available.

Parity on page B4-116. Relaxed requirement to set
CTRL/STAT.STICKYORUN if an SWD write data
parity error occurs.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. E3-387
ID072524 Non-Confidential

Appendix E3 Revisions

Table E3-3 Changes between Issues B and C

Location Change

AMBA AXI5 on page E1-366. Added support for AXI5.

AMBA AHB5 on page E1-373. Added support for AHB5.

MEM-AP Memory Tagging Extension on
page C2-194.

Added support for MTE.

CFG1, Configuration register 1 on
page C2-212.

T0TR, Tag 0 Transfer register on
page C2-239.

Table E3-4 Changes between Issues C and D

Location Change

Chapter C2 The Memory Access Port.

Chapter D2 Class 0x1 ROM Tables.

Chapter D3 Class 0x9 ROM Tables.

AMBA AXI5 on page E1-366.

AMBA APB4 and APB5 on page E1-378.

Added support for Realm Management
Extension, affecting Generic MEM-AP,
AXI-AP, and APB-AP.

Table E3-5 Changes between Issues D and E

Location Change

Chapter C2 The Memory Access Port.

AMBA AXI5 on page E1-366.

Added support for the Memory
Encryption Contexts (MEC) extension,
affecting Generic MEM-AP and
AXI-AP.
E3-388 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

Glossary

This glossary describes some of the terms that are used in Arm documentation.

Abort An abort occurs when an illegal memory access causes an exception. An abort can be generated by the hardware
that manages memory accesses, or by the external memory system.

ADI See Arm Debug Interface (ADI).

AHB
An AMBA bus protocol supporting pipelined operation, with the address and data phases occurring during different
clock periods, meaning that the address phase of a transfer can occur during the data phase of the previous transfer.
AHB provides a subset of the functionality of the AMBA AXI protocol.

See also AMBA.

Aligned A data item stored at an address that is exactly divisible by the number of bytes that defines its data size. Aligned
doublewords, words, and halfwords have addresses that are divisible by eight, four, and two respectively. An aligned
access is one where the address of the access is aligned to the size of each element of the access.

AMBA
The AMBA family of protocol specifications is the Arm open standard for on-chip buses. AMBA provides solutions
for the interconnection and management of the functional blocks that make up a System-on-Chip (SoC).
Applications include the development of embedded systems with one or more processors or signal processors and
multiple peripherals.

APB
An AMBA bus protocol for ancillary or general-purpose peripherals such as timers, interrupt controllers, UARTs,
and I/O ports. It connects to the main system bus through a system-to-peripheral bus bridge that helps reduce system
power consumption.

Arm Debug Interface (ADI)
The ADI connects a debugger to a device. The ADI is used to access memory-mapped components in a system, such
as processors and CoreSight components. The ADI protocol defines the physical wire protocols permitted, and the
logical programmers model.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. Glossary-389
ID072524 Non-Confidential

 Glossary

AXI
An AMBA bus protocol that supports:

• Separate phases for address or control and data.

• Unaligned data transfers using byte strobes.

• Burst-based transactions with only start address issued.

• Separate read and write data channels.

• Issuing multiple outstanding addresses.

• Out-of-order transaction completion.

• Optional addition of register stages to meet timing or repropagation requirements.

The AXI protocol includes optional signaling extensions for low-power operation.

Big-endian In the context of the Arm architecture, big-endian is defined as the memory organization in which the least
significant byte of a word is at a higher address than the most significant byte, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.

See also Little-endian and Endianness.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement boundary scan technology using a
standard JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form
the chain connected between TDI and TDO, through which test data is shifted. A core can contain several shift
registers, enabling a scan to access selected parts of the device.

Burst A group of transfers that form a single transaction. With AMBA protocols, only the first transfer of the burst
includes address information, and the transfer type determines the addresses used for subsequent transfers.

Cold reset A cold reset has the same effect as starting the processor by turning the power on. This clears main memory and
many internal settings. Some program failures can lock up the core and require a cold reset to restart the system.

This is also known as power-on or powerup reset.

See also Processing Element (PE), Warm reset.

Completer An agent in a computing system that responds to and completes a memory transaction that was initiated by a
Requester.

See also Requester.

Core reset See Warm reset.

DAP See Debug Access Port (DAP).

Data Link layer The layer of an ADI implementation that provides the functional and procedural means to transfer data between the
external debugger and the Debug Port (DP). ADIv5 and upwards define two Data Link layers, one based on the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture, referred to as JTAG, and one based on the
Arm Serial Wire Debug protocol interface, referred to as SW-DP.

DATA LINK DEFINED
Means that the behavior is not defined by the base architecture, but must be defined and documented by individual
Data Link layers of the architecture.

When DATA LINK DEFINED appears in body text, it is always in SMALL CAPITALS.

DBGTAP See Debug Test Access Port (DBGTAP).

Debug Access Port (DAP)
A block that acts as an AMBA, AHB, or AHB-Lite Requester on a system bus, to provide access to the debug target.

Debug Test Access Port (DBGTAP)
A debug control and data interface based on IEEE 1149.1 JTAG Test Access Port (TAP).
Glossary-390 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

 Glossary

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults, together with
custom hardware that supports software debugging.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Doubleword-aligned
A data item having a memory address that is divisible by eight.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a core, outputs trace information on a trace port. The ETM provides
core-driven trace through a trace port compliant to the ATB protocol. An ETM always supports instruction trace,
and might support data trace.

Endianness The scheme that determines the order of the successive bytes of data in a larger data structure when that structure
is stored in memory.

See also Little-endian and Big-endian.

ETM See Embedded Trace Macrocell (ETM).

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned
A data item having a memory address that is divisible by 2.

Host A computer that provides data and other services to another computer. In the context of an Arm debugger, a
computer providing debugging services to a target being debugged.

IMP DEF See IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED
Behavior that is not defined by the architecture, but must be defined and documented by individual
implementations.

When IMPLEMENTATION DEFINED appears in body text, it is always in SMALL CAPITALS.

Joint Test Action Group (JTAG)
An IEEE group focused on silicon chip testing methods. Many debug and programming tools use a Joint Test Action
Group (JTAG) interface port to communicate with processors.

See IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-Scan Architecture specification available
from the IEEE Standards Association.

JTAG See Joint Test Action Group (JTAG).

JTAG Access Port (JTAG-AP)
An optional component of the DAP that provides debugger access to on-chip scan chains.

JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for debug access.

JTAG-AP See JTAG Access Port (JTAG-AP).

JTAG-DP See JTAG Debug Port (JTAG-DP).

Little-endian In the context of the Arm architecture, little-endian is defined as the memory organization in which the most
significant byte of a word is at a higher address than the least significant byte.

See also Big-endian and Endianness.

PE See Processing Element (PE).

Powerup reset See Cold reset.

Processing Element (PE)
The abstract machine defined in the Arm architecture, as documented in an Arm® Architecture Reference Manual.
A PE implementation that is compliant with the Arm architecture must conform with the behaviors described in the
corresponding Arm® Architecture Reference Manual.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. Glossary-391
ID072524 Non-Confidential

 Glossary

RAO See Read-As-One (RAO).

RAO/WI Read-as-One, Writes Ignored.

Hardware must implement the field as Read-as-One, and must ignore writes to the field. Software can rely on the
field reading as all 1s, and on writes being ignored. This description can apply to a single bit that reads as 0b1, or to
a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-as-Zero, Writes ignored.

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field. Software can rely on the
field reading as all 0s, and all writes being ignored. This description can apply to a single bit that reads as 0b0, or to
a field that reads as all 0s.

See also Read-As-Zero (RAZ).

Read-As-One (RAO)
Hardware must implement the field as reading as all 1s. Software can rely on the field reading as all 1s. This
description can apply to a single bit that reads as 0b1, or to a field that reads as all 1s.

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s. Software can rely on the field reading as all 0s. This
description can apply to a single bit that reads as 0b0, or to a field that reads as all 0s.

Requester An agent in a computing system that is capable of initiating memory transactions.

See also Completer.

RES0 A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior. Used for fields in register descriptions,
and for fields in architecturally-defined data structures that are held in memory, for example in translation table
descriptors.

Note

RES0 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

This means the definition of RES0 for register fields is:

If a bit is RES0 in all contexts

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0b0. In this case:

• Reads of the bit always return 0b0.

• Writes to the bit are ignored.

The bit might be described as RES0, WI, to distinguish it from a bit that behaves as described
in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0b0.

• A read of the bit returns the last value successfully written to the bit.

Note
As indicated in this list, this value might be written by an indirect write to the register.
Glossary-392 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

 Glossary

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the core, other than
determining the value read back from the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is implementation defined on a
field-by-field basis.

If a bit is RES0 only in some contexts

When the bit is described as RES0:

• An indirect write to the register sets the bit to 0b0.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an unknown value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must
have no effect on the operation of the core, other than determining the value read back from
that bit.

For any RES0 bit, software:

• Must not rely on the bit reading as 0b0.

• Must use an SBZP policy to write to the bit.

The RES0 description can apply to bits or bitfields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0b0, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

This RES0 description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field
that should be written as its preserved value or as all 0s.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1 A reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior. Used for fields in register descriptions,
and for fields in architecturally-defined data structures that are held in memory, for example in translation table
descriptors.

Note

RES1 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

This means the definition of RES1 for register fields is:

If a bit is RES1 in all contexts
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. Glossary-393
ID072524 Non-Confidential

 Glossary

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0b1. In this case:

• Reads of the bit always return 0b1.

• Writes to the bit are ignored.

The bit might be described as RES1, WI, to distinguish it from a bit that behaves as described
in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0b1.

• A read of the bit returns the last value successfully written to the bit.

Note
As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the core, other than
determining the value read back from the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is implementation defined on a
field-by-field basis.

If a bit is RES1 only in some contexts

When the bit is described as RES1:

• An indirect write to the register sets the bit to 0b1.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an unknown value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must
have no effect on the operation of the core, other than determining the value read back from
that bit.

For any RES1 bit, software:

• Must not rely on the bit reading as 0b1.

• Must use an SBOP policy to write to the bit.

The RES1 description can apply to bits or bitfields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 0b1, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

This RES1 description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field
that should be written as its preserved value or as all 1s.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

Reserved Unless otherwise stated in the architecture or product documentation:

• Reserved instruction and 32-bit system control register encodings are unpredictable.
Glossary-394 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

 Glossary

• Reserved 64-bit system control register encodings are undefined.

• Reserved register bit fields are UNK/SBZP.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan technology using a standard
JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form the chain
connected between TDI and TDO, through which test data is shifted. Processors can contain several shift registers
to enable you to access selected parts of the device.

Serial Wire debug (SWD)
A debug implementation that uses a serial connection between the SoC and a debugger. This connection normally
requires a bidirectional data signal and a separate clock signal, rather than the four to six signals required for a JTAG
connection.

Serial-Wire Debug Port (SW-DP)
The interface for Serial Wire Debug.

Serial Wire JTAG Debug Port (SWJ-DP)
The SWJ-DP is a combined JTAG-DP and SW-DP that you can use to connect either a Serial Wire Debug (SWD)
or JTAG probe to a target.

Should-Be-One (SBO)
Hardware must ignore writes to the field.

Software should write the field as all 1s. If software writes a value that is not all 1s, it must expect an
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0b1, or to a field that should be written as all 1s.

Should-Be-One-or-Preserved (SBOP)
The Armv7 Large Physical Address Extension modified the definition of SBOP to apply to register fields that are
SBOP in some but not all contexts. From the introduction of Armv8 such register fields are described as RES1, see
RES1. The definition of SBOP given here applies only to fields that are SBOP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, it should preserve
the value of the field by writing the value that it previously read from the field. Otherwise, it should write the field
as all 1s.

If software writes a value to the field that is not a value previously read for the field and is not all 1s, it must expect
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0b1, or to a field that
should be written as its preserved value or as all 1s.

See also Should-Be-Zero-or-Preserved (SBZP), Should-Be-One (SBO).

Should-Be-Zero (SBZ)
Hardware must ignore writes to the field.

Software should write the field as all 0s. If software writes a value that is not all 0s, it must expect an
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0b0, or to a field that should be written as all 0s.

Should-Be-Zero-or-Preserved (SBZP)
The Armv7 Large Physical Address Extension modified the definition of SBZP to apply to register fields that are
SBZP in some but not all contexts. From the introduction of Armv8 such register fields are described as res0, see
RES0. The definition of SBZP given here applies only to field that are SBZP in all contexts.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. Glossary-395
ID072524 Non-Confidential

 Glossary

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, it must preserve the
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all
0s.

If software writes a value to the field that is not a value previously read for the field and is not all 0s, it must expect
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field that
should be written as its preserved value or as all 0s.

See also Should-Be-One-or-Preserved (SBOP), Should-Be-Zero (SBZ).

SWD See Serial Wire debug (SWD).

SW-DP See Serial-Wire Debug Port (SW-DP).

SWJ-DP See Serial Wire JTAG Debug Port (SWJ-DP)

TAP See Test Access Port (TAP).

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output and control interface to a
JTAG boundary-scan architecture. The mandatory terminals are TDI, TDO, TMS, and TCK. In the JTAG standard,
the nTRST signal is optional, but this signal is mandatory in Arm processors because it is used to reset the debug
logic.

See also Joint Test Action Group (JTAG), Debug Test Access Port (DBGTAP).

Trace port A port on a device, such as a processor or ASIC, to output trace information.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of the elements of the
access.

See also Aligned.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not return information that cannot be accessed at
the current or a lower level of privilege using instructions that are not UNPREDICTABLE or CONSTRAINED
UNPREDICTABLE and do not return UNKNOWN values.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

When UNKNOWN appears in body text, it is always in SMALL CAPITALS.

UNP See UNPREDICTABLE.

UNPREDICTABLE
For an Arm processor, UNPREDICTABLE means the behavior cannot be relied upon. UNPREDICTABLE behavior must
not perform any function that cannot be performed at the current or a lower level of privilege using instructions that
are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect. An instruction that is
UNPREDICTABLE can be implemented as UNDEFINED.

In an implementation that supports Virtualization, the Non-secure execution of unpredictable instructions at a lower
level of privilege can be trapped to the hypervisor, provided that at least one instruction that is not unpredictable can
be trapped to the hypervisor if executed at that lower level of privilege.

For an Arm trace macrocell, UNPREDICTABLE means that the behavior of the macrocell cannot be relied on. Such
conditions have not been validated. When applied to the programming of an event resource, only the output of that
event resource is UNPREDICTABLE. UNPREDICTABLE behavior can affect the behavior of the entire system, because
the trace macrocell can cause the core to enter Debug state, and external outputs can be used for other purposes.
Glossary-396 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

 Glossary

Note

In issue A of this document, UNPREDICTABLE also meant an UNKNOWN value.

When UNPREDICTABLE appears in body text, it is always in SMALL CAPITALS.

W1C Hardware must implement the bit as follows:

• Writing a 0b1 to the bit clears the bit to 0b0.

• Writing a 0b0 to the bit has no effect.

Warm reset Also known as a core reset. Initializes most of the processor functionality, excluding the debug controller and debug
logic. This type of reset is useful if you are using the debugging features of a processor.

See also Cold reset.

WI Hardware must ignore writes to the field. Software can rely on writes being ignored. This description can apply to
a single bit, or to a field.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned A data item having a memory address that is divisible by four.
ARM IHI 0074E Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. Glossary-397
ID072524 Non-Confidential

 Glossary

Glossary-398 Copyright © 2017, 2018, 2020, 2022, 2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0074E
Non-Confidential ID072524

	Arm Debug Interface Architecture Specification ADIv6.0
	Contents
	Preface
	About this manual
	Intended audience

	Using this book
	Conventions
	Typographic conventions
	Signals
	Timing diagrams
	Numbers
	Pseudocode descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this book
	Progressive terminology commitment

	Part A: The Arm Debug Interface�
	A1: About the Arm Debug Interface�
	A1.1 ADI versions
	A1.2 Purpose of the ADI
	A1.2.1 Embedded core debug functionality
	A1.2.2 System debug functionality
	A1.2.3 Compatibility between CoreSight and Arm debug interfaces

	A1.3 The debug link
	A1.4 The subdivisions of an ADIv6 implementation
	A1.4.1 Connections to the ADI
	A1.4.2 Accessing the DP and AP registers

	A1.5 The Debug Port (DP)
	A1.6 Access Ports (APs)
	A1.6.1 Using the Debug Port to access Access Ports
	A1.6.2 Guide to the detailed description of a MEM-AP
	A1.6.3 Guide to the detailed description of a JTAG-AP
	A1.6.4 Using the AP to access debug resources

	A1.7 Design choices and implementation examples
	A1.7.1 Choices for the DP
	A1.7.2 Choices for the APs

	A1.8 Power Requests

	Part B: The Debug Port�
	B1: About the DP�
	B1.1 MINDP, Minimal DP extension
	B1.2 Sticky flags and DP error responses
	B1.3 The transaction counter
	B1.4 Pushed-compare and pushed-verify operations
	B1.5 Power and reset control

	B2: DP Reference Information�
	B2.1 DP architecture versions
	B2.1.1 DP architecture versions summary
	B2.1.2 DP architecture version 3 (DPv3) address map
	B2.1.3 Register maps, and accesses to reserved addresses

	B2.2 DP register descriptions
	B2.2.1 ABORT, Abort register
	B2.2.2 BASEPTR0-BASEPTR1, Base Pointer 0 and 1
	B2.2.3 CTRL/STAT, Control/Status register
	B2.2.4 DLCR, Data Link Control Register
	B2.2.5 DLPIDR, Data Link Protocol Identification Register
	B2.2.6 DPIDR, Debug Port Identification Register
	B2.2.7 DPIDR1, Debug Port Identification Register 1
	B2.2.8 EVENTSTAT, Event Status register
	B2.2.9 RDBUFF, Read Buffer register
	B2.2.10 RESEND, Read Resend register
	B2.2.11 SELECT-SELECT1, AP Select registers
	B2.2.12 TARGETID, Target Identification register
	B2.2.13 TARGETSEL, Target Selection register

	B2.3 System and debug power control behavior
	B2.3.1 The ADI power domains model
	B2.3.2 Power control requirements and operation
	B2.3.3 Emulation of powerdown
	B2.3.4 Emulation of power control

	B2.4 Debug reset control behavior
	B2.4.1 Emulation of debug reset request
	B2.4.2 Limitations of CDBGRSTREQ and CDBGRSTACK

	B2.5 System reset control behavior
	B2.5.1 Limitations of system reset control

	B3: The JTAG Debug Port�
	B3.1 About the JTAG-DP
	B3.2 The scan chain interface
	B3.2.1 DP elements
	B3.2.2 Physical connection to the JTAG-DP
	B3.2.3 The Debug TAP State Machine (DBGTAPSM)

	B3.3 IR scan chain and IR instructions
	B3.3.1 Required IR instructions
	B3.3.2 IMPLEMENTATION DEFINED extensions to the IR instruction set
	B3.3.3 IR, JTAG-DP Instruction Register

	B3.4 DR scan chain and DR instructions
	B3.4.1 ABORT, JTAG-DP Abort register
	B3.4.2 BYPASS, JTAG-DP Bypass register
	B3.4.3 DPACC and APACC, JTAG-DP DP and AP Access registers
	B3.4.4 IDCODE, the JTAG TAP ID register

	B4: The Serial Wire Debug Port�
	B4.1 About the SWD protocol
	B4.1.1 Basic operation
	B4.1.2 SWD protocol versions
	B4.1.3 Line turnaround
	B4.1.4 Idle cycles
	B4.1.5 Bit order
	B4.1.6 Parity
	B4.1.7 Limitations of multi-drop

	B4.2 SWD protocol operation
	B4.2.1 Successful write operation (OK response)
	B4.2.2 Successful read operation (OK response)
	B4.2.3 WAIT response to read or write operation request
	B4.2.4 FAULT response to read or write operation request
	B4.2.5 Protocol error response
	B4.2.6 Sticky overrun behavior
	B4.2.7 SW-DP write buffering
	B4.2.8 Summary of target responses
	B4.2.9 Summary of host responses

	B4.3 SWD interface
	B4.3.1 Line interface
	B4.3.2 Line pull-up
	B4.3.3 Connection and line reset sequence
	B4.3.4 Target selection protocol, SWD protocol version 2

	B5: The Serial Wire/JTAG Debug Port�
	B5.1 About the SWJ-DP
	B5.1.1 SWJ-DP structure
	B5.1.2 Limitations when reusing pins

	B5.2 Switching between SWD and JTAG
	B5.2.1 The Switching Mechanism
	B5.2.2 Switching from JTAG to SWD operation
	B5.2.3 Switching from SWD to JTAG operation

	B5.3 Dormant operation
	B5.3.1 Using the dormant state outside of SWJ-DP
	B5.3.2 Switching from JTAG to dormant state
	B5.3.3 Switching from SWD to dormant state
	B5.3.4 Leaving dormant state

	B5.4 Restrictions on switching between operating modes

	Part C: The Access Port�
	C1: About the AP�
	C1.1 AP requirements
	C1.2 Selecting and accessing an AP
	C1.2.1 Stalling accesses

	C1.3 AP Programmers’ Model Summary
	C1.4 AP Register Descriptions
	C1.4.1 AUTHSTATUS, Authentication Status Register
	C1.4.2 CIDR0-CIDR3, Component Identification Registers
	C1.4.3 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register
	C1.4.4 DEVAFF0-DEVAFF1, Device Affinity Registers
	C1.4.5 DEVARCH, Device Architecture Register
	C1.4.6 DEVID, Device Configuration Register
	C1.4.7 DEVID1-DEVID2, Device Configuration Registers
	C1.4.8 DEVTYPE, Device Type Register
	C1.4.9 IDR, Identification Register
	C1.4.10 ITCTRL, Integration Mode Control Register
	C1.4.11 LAR and LSR, Lock Access Register and Lock Status Register
	C1.4.12 PIDR0-PIDR7, Peripheral Identification Registers

	C2: The Memory Access Port�
	C2.1 About the MEM-AP
	C2.1.1 The programmers’ model for debug register access
	C2.1.2 Selecting and accessing the MEM-AP
	C2.1.3 The MEM-AP registers
	C2.1.4 MEM-AP register accesses and memory accesses
	C2.1.5 MEM-AP response to an abort request through the DP ABORT register

	C2.2 MEM-AP functions
	C2.2.1 Enabling access to the connected debug device or memory system
	C2.2.2 Auto-incrementing the Transfer Address Register (TAR)
	C2.2.3 Stalling accesses
	C2.2.4 Error Handling
	C2.2.5 Response to debug component errors
	C2.2.6 Variable access size for memory accesses
	C2.2.7 Byte lanes
	C2.2.8 Packed transfers
	C2.2.9 Completer Memory Ports
	C2.2.10 Twin MEM-APs
	C2.2.11 Software access control
	C2.2.12 Realm Management Extension

	C2.3 Implementing a MEM-AP
	C2.3.1 IMPLEMENTATION DEFINED features of a MEM-AP implementation
	C2.3.2 MEM-AP implementation requirements
	C2.3.3 MEM-AP Extensions

	C2.4 MEM-AP examples of pushed-verify and pushed-compare
	C2.4.1 Example of using a pushed-verify operation on a MEM-AP
	C2.4.2 Example of using a pushed-find operation on a MEM-AP
	C2.4.3 Example of using the transaction counter for a pushed-compare operation on a MEM-AP

	C2.5 MEM-AP programmers’ model
	C2.6 MEM-AP register descriptions
	C2.6.1 AUTHSTATUS, Authentication Status Register
	C2.6.2 BASE, Debug Base Address register
	C2.6.3 BD0-BD3, Banked Data registers
	C2.6.4 CFG, Configuration register
	C2.6.5 CFG1, Configuration register 1
	C2.6.6 CIDR0-CIDR3, Component Identification Registers
	C2.6.7 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register
	C2.6.8 CSW, Control/Status Word register
	C2.6.9 DAR0-DAR255, Direct Access registers
	C2.6.10 DEVAFF0-DEVAFF1, Device Affinity Registers
	C2.6.11 DEVARCH, Device Architecture Register
	C2.6.12 DEVID, Device Configuration Register
	C2.6.13 DEVID1-DEVID2, Device Configuration Registers
	C2.6.14 DEVTYPE, Device Type Register
	C2.6.15 DRW, Data Read/Write register
	C2.6.16 IDR, Identification Register
	C2.6.17 ITCTRL, Integration Mode Control Register
	C2.6.18 LAR and LSR, Lock Access Register and Lock Status Register
	C2.6.19 MBT, Memory Barrier Transfer register
	C2.6.20 MECID, MECID value register
	C2.6.21 PIDR0-PIDR7, Peripheral Identification Register
	C2.6.22 TAR, Transfer Address Register
	C2.6.23 T0TR, Tag 0 Transfer register
	C2.6.24 TRR, Transfer Response register

	C3: The JTAG Access Port�
	C3.1 About the JTAG-AP
	C3.1.1 Selecting and accessing the JTAG-AP
	C3.1.2 Logical structure of the JTAG-AP
	C3.1.3 JTAG port signals

	C3.2 Operation of the JTAG-AP
	C3.2.1 Stalling accesses
	C3.2.2 Resetting connected JTAG devices or subsystems
	C3.2.3 Handling of an ABORT instruction
	C3.2.4 Pushed transaction and transaction counter support

	C3.3 The JTAG Engine Byte Command Protocol
	C3.3.1 The encoding of the TMS packet
	C3.3.2 The encoding of the TDI_TDO packet
	C3.3.3 Response bytes from a TDI_TDO packet

	C3.4 JTAG-AP programmers’ model
	C3.5 JTAG-AP register descriptions
	C3.5.1 AUTHSTATUS, Authentication Status Register
	C3.5.2 BRFIFO1-BRFIFO4, Byte FIFO registers for read access
	C3.5.3 BWFIFO1-BWFIFO4, Byte FIFO registers for write access
	C3.5.4 CIDR0-CIDR3, Component Identification Registers
	C3.5.5 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register
	C3.5.6 CSW, Control/Status Word Register
	C3.5.7 DEVAFF0-DEVAFF1, Device Affinity Registers
	C3.5.8 DEVARCH, Device Architecture Register
	C3.5.9 DEVID, Device Configuration Register
	C3.5.10 DEVID1-DEVID2, Device Configuration Registers
	C3.5.11 DEVTYPE, Device Type Register
	C3.5.12 ITCTRL, Integration Mode Control Register
	C3.5.13 LAR and LSR, Lock Access Register and Lock Status Register
	C3.5.14 PIDR0-PIDR7, Peripheral Identification Register
	C3.5.15 PSEL, Port Select register
	C3.5.16 PSTA, Port Status Register

	Part D: ROM Tables�
	D1: About ROM Tables�
	D1.1 ROM Tables Overview
	D1.2 ROM Table Types
	D1.3 Component and Peripheral ID Registers for ROM Tables
	D1.3.1 Identifying the debug SoC, system, or subsystem

	D1.4 The component address
	D1.5 Location of the ROM Table
	D1.6 ROM Table hierarchies
	D1.6.1 Peripheral ID Registers in lower-level ROM Tables
	D1.6.2 Component Revision Numbers
	D1.6.3 Prohibited ROM Table references

	D2: Class 0x1 ROM Tables�
	D2.1 About Class 0x1 ROM Tables
	D2.2 Class 0x1 ROM Table summary
	D2.2.1 Class 0x1 ROM Table Layout
	D2.2.2 ROM Table entries that are marked not present

	D2.3 Use of power domain IDs
	D2.3.1 Power domain entries
	D2.3.2 Algorithm to discover power domain IDs

	D2.4 Register Descriptions
	D2.4.1 CIDR0-CIDR3, Component Identification Registers
	D2.4.2 MEMTYPE, Memory Type Register
	D2.4.3 PIDR0-PIDR7, Peripheral Identification Register
	D2.4.4 ROMENTRY<n>, Class 0x1 ROM Table entries

	D3: Class 0x9 ROM Tables�
	D3.1 About Class 0x9 ROM Tables
	D3.2 Class 0x9 ROM Table summary
	D3.2.1 Class 0x9 ROM Table Layout
	D3.2.2 ROM Table entries that are marked not present

	D3.3 Use of power domain IDs
	D3.3.1 Power domain entries
	D3.3.2 Algorithm to discover power domain IDs
	D3.3.3 Debug power requests
	D3.3.4 System power requests

	D3.4 Reset control
	D3.4.1 Debug reset control
	D3.4.2 System reset control

	D3.5 Register descriptions
	D3.5.1 AUTHSTATUS, Authentication Status Register
	D3.5.2 CIDR0-CIDR3, Component Identification Registers
	D3.5.3 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register
	D3.5.4 DBGPCR<n>, Debug Power Control Registers
	D3.5.5 DBGPSR<n>, Debug Power Status Registers
	D3.5.6 DBGRSTAR, Debug Reset Acknowledge Register
	D3.5.7 DBGRSTRR, Debug Reset Request Register
	D3.5.8 DEVAFF0-DEVAFF1, Device Affinity Registers
	D3.5.9 DEVARCH, Device Architecture Register
	D3.5.10 DEVID, Device Configuration Register
	D3.5.11 DEVID1-DEVID2, Device Configuration Registers
	D3.5.12 DEVTYPE, Device Type Register
	D3.5.13 ITCTRL, Integration Mode Control Register
	D3.5.14 LAR and LSR, Software Lock Access Register and Software Lock Status Register
	D3.5.15 PIDR0-PIDR7, Peripheral Identification Register
	D3.5.16 PRIDR0, Power Request ID Register 0
	D3.5.17 ROMENTRY<n>, Class 0x9 ROM Table entries
	D3.5.18 SYSPCR<n>, Debug Power Control Registers
	D3.5.19 SYSPSR<n>, System Power Status Registers
	D3.5.20 SYSRSTAR, System Reset Acknowledge Register
	D3.5.21 SYSRSTRR, System Reset Request Register

	Part E: Appendixes�
	E1: Standard Memory Access Port Definitions�
	E1.1 Introduction
	E1.2 AMBA AXI3 and AXI4
	E1.2.1 CSW register implementation

	E1.3 AMBA AXI4 with ACE-Lite
	E1.3.1 CSW register implementation
	E1.3.2 MBT register implementation

	E1.4 AMBA AXI5
	E1.4.1 CSW register implementation

	E1.5 AMBA AHB3
	E1.5.1 CSW register implementation

	E1.6 AMBA AHB5
	E1.6.1 CSW register implementation

	E1.7 AMBA AHB5 with enhanced HPROT control
	E1.7.1 CSW register implementation

	E1.8 AMBA APB2 and APB3
	E1.8.1 CSW register implementation

	E1.9 AMBA APB4 and APB5
	E1.9.1 CSW register implementation

	E2: Cross-over with the Arm Architecture�
	E2.1 Introduction
	E2.2 Armv6-M, Armv7-M, and Armv8-M architecture profiles
	E2.3 PEs with a physical address up to 32 bits
	E2.4 PEs with a physical address greater than 32 bits
	E2.5 Summary of the requirements for ADIv6 implementations

	E3: Revisions�
	Glossary

